2019-05-29

Seasonal variability in global industrial fishing effort

Guiet J, Galbraith E, Kroodsma D, Worm B. Seasonal variability in global industrial fishing effort Hiddink JGeert. PLOS ONE [Internet]. 2019 ;14(5):e0216819. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216819
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Human beings are the dominant top predator in the marine ecosystem. Throughout most of the global ocean this predation is carried out by industrial fishing vessels, that can now be observed in unprecedented detail via satellite monitoring of Automatic Identification System (AIS) messages. The spatial and temporal distribution of this fishing effort emerges from the coupled interaction of ecological and socio-economic drivers and can therefore yield insights on the dynamics of both the ecosystem and fishers. Here we analyze temporal variability of industrial fishing effort from 2015-2017 as recorded by global AIS coverage, and differentiated by fishing gear type. The strongest seasonal signal is a reduction of total deployed effort during the annual fishing moratorium on the numerically-dominant Chinese fleet, which occurs during boreal summer. An additional societally-controlled reduction of effort occurs during boreal winter holidays. After accounting for these societal controls, the total deployed effort is relatively invariant throughout the year for all gear types except squid jiggers and coastal purse seiners. Despite constant deployment levels, strong seasonal variability occurs in the spatial pattern of fishing effort for gears targeting motile pelagic species, including purse seiners, squid jiggers and longliners. Trawlers and fixed gears target bottom-associated coastal prey and show very little overall seasonality, although they exhibit more seasonal variation at locations that are further from port. Our results suggest that societal controls dominate the total deployment of fishing effort, while the behavior of pelagic fish, including seasonal migration and aggregation, is likely the most prominent driver of the spatial seasonal variations in global fishing effort.

Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction

Meyers MT, Cochlan WP, Carpenter EJ, Kimmerer WJ. Effect of ocean acidification on the nutritional quality of marine phytoplankton for copepod reproduction Melzner F. PLOS ONE [Internet]. 2019 ;14(5):e0217047. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217047
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Phytoplankton are the oceans’ principal source of polyunsaturated fatty acids that support the growth and reproduction of consumers such as copepods. Previous studies have demonstrated ocean acidification (OA) can change the availability of polyunsaturated fatty acids to consumer diets which may affect consumer reproduction. Two laboratory experiments were conducted to examine the effects of feeding high-pCO2-reared phytoplankton on copepod egg production, hatching success, and naupliar survival. Marine phytoplankton Rhodomonas salinaSkeletonema marinoiProrocentrum micansand Isochrysis galbana were exponentially grown in semi-continuous cultures at present (control) (400 ppm CO2, pH~8.1) and future (1,000 ppm CO2, pH~7.8) conditions and provided to Acartia tonsa copepods over 4 consecutive days as either nitrogen-limited (Exp. I) or nitrogen-depleted (Exp. II) mixed assemblage of phytoplankton. The composition of FAs in the phytoplankton diet was affected by pCO2concentration and nitrogen deficiency; the ratio of essential fatty acids to total polyunsaturated fatty acids decreased in phytoplankton grown under high pCO2 and the mass of total fatty acids increased under nitrogen depletion. Additionally, total concentrations of essential fatty acids and polyunsaturated fatty acids in the diet mixtures were less under the high-pCO2 compared to the control-pCO2 treatments. Median egg production, hatching success, and naupliar survival were 48–52%, 4–87%, and 9–100% lower, respectively, in females fed high-pCO2 than females fed low-pCO2 phytoplankton, but this decrease in reproductive success was less severe when fed N-depleted, but fatty acid-rich cells. This study demonstrates that the effects of OA on the nutritional quality of phytoplankton (i.e., their cellular fatty acid composition and quota) were modified by the level of nitrogen deficiency and the resulting negative reproductive response of marine primary consumers.

Linking management planning for coastal wetlands to potential future wave attenuation under a range of relative sea-level rise scenarios

Hijuelos ACommagere, Dijkstra JT, Carruthers TJB, Heynert K, Reed DJ, van Wesenbeeck BK. Linking management planning for coastal wetlands to potential future wave attenuation under a range of relative sea-level rise scenarios Chapman MGeraldine. PLOS ONE [Internet]. 2019 ;14(5):e0216695. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0216695
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Understanding changes in wave attenuation by emergent vegetation as wetlands degrade or accrete over time is crucial for incorporation of wetlands into holistic coastal risk management. Linked SLAMM and XBeach models were used to investigate potential future changes in wave attenuation over a 50-year period in a degrading, subtropical wetland and a prograding, temperate wetland. These contrasting systems also have differing management contexts and were contrasted to demonstrate how the linked models can provide management-relevant insights. Morphological development of wetlands for different scenarios of sea-level rise and accretion was simulated with SLAMM and then coupled with different vegetation characteristics to predict the influence on future wave attenuation using XBeach. The geomorphological context, subsidence, and accretion resulted in large predicted reductions in the extent of vegetated land (e.g., wetland) and changes in wave height reduction potential across the wetland. These were exacerbated by increases in sea-level from +0.217 m to +0.386 m over a 50-year period, especially at the lowest accretion rates in the degrading wetland. Mangrove vegetation increased wave attenuation within the degrading, subtropical, saline wetland, while grazing reduced wave attenuation in the temperate, prograding wetland. Coastal management decisions and actions, related to coastal vegetation type and structure, have the potential to change future wave attenuation at a spatial scale relevant to coastal protection planning. Therefore, a coastal management approach that includes disaster risk reduction, biodiversity, and climate change, can be informed by coastal modeling tools, such as those demonstrated here for two contrasting case studies.

Algal export in the Arctic Ocean in times of global warming

Lalande C, Nöthig E‐M, Fortier L. Algal export in the Arctic Ocean in times of global warming. Geophysical Research Letters [Internet]. 2019 . Available from: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL083167
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $42.00
Type: Journal Article

Satellite‐derived data suggest an increase in annual primary production following the loss of summer sea ice in the Arctic Ocean. The scarcity of field data to corroborate this enhanced algal production incited a collaborative project combining 6 annual cycles of sequential sediment trap measurements obtained over a 17‐year period in the Eurasian Arctic Ocean. Here, we present microalgal fluxes measured at ~200 m to reflect the bulk of algal carbon production. Ice algae contributed to a large proportion of the microalgal carbon export before complete ice melt and possible detection of their production by satellites. In the northern Laptev Sea, annual microalgal carbon fluxes were lower during the 2007 minimum ice extent than in 2006. In 2012, early snowmelt led to early microalgal carbon flux in the Nansen Basin. Hence, a change in the timing of snowmelt and ice algae release may affect productivity and export over the Arctic basins.

Comparison of Phytoplankton Communities Between Melt Ponds and Open Water in the Central Arctic Ocean

Zhang T, Zhuang Y, Jin H, Li K, Ji Z, Li Y, Bai Y. Comparison of Phytoplankton Communities Between Melt Ponds and Open Water in the Central Arctic Ocean. Journal of Ocean University of China [Internet]. 2019 ;18(3):573 - 579. Available from: https://link.springer.com/article/10.1007/s11802-019-3871-0
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Climate warming has a significant impact on the sea ice and ecosystem of the Arctic Ocean. Under the increasing numbers of melt ponds in Arctic sea ice, the phytoplankton communities associated with the ice system are changing. During the 7th Chinese National Arctic Research Expedition cruise in summer 2016, photosynthesis pigments and nutrients were analyzed, revealing differences in phytoplankton communities between melt ponds and open water in the central Arctic. Photo synthetic pigment analysis suggested that Fuco (5-91 μg m-3 and Diadino (4-21 μg m-3) were the main pigments in the open water. However, the melt ponds had high concentrations of Viola (7-30 μg m-3), Lut (4-59 μg m-3) and Chl b (11-38 μg m-3), suggesting that green algae dominated phytoplankton communities in the melt ponds. The significant differences in phytoplankton communities between melt ponds and open water might be due to the salinity difference. Moreover, green algae may play a more important role in Arctic sea ice ecosystems with the expected growing number of melt ponds in the central Arctic Ocean.

Climate change induced range shifts in seaweeds distributions in Europe

de la Hoz CFernández, Ramos E, Puente A, Juanes JA. Climate change induced range shifts in seaweeds distributions in Europe. Marine Environmental Research [Internet]. 2019 ;148:1 - 11. Available from: https://www.sciencedirect.com/science/article/pii/S0141113619300686?via%3Dihub
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

There are evidences of how climate change is affecting seaweeds distribution and the ecosystems services they provide. Therefore, it is necessary to consider these impacts when managing marine areas. One of the most applied tools in recent years to deal with this are species distribution models, however there are still some challenges to solve, such as the inclusion of hydrodynamic predictors and the application of effective, transferable and user-oriented methodologies.

Five species (Saccorhiza polyschidesGelidium spinosumSargassum muticumPelvetia canaliculata and Cystoseira baccata) in Europe and 15 variables were considered. Nine of them were projected to the RCPs 4.5 and 8.5 for the mid-term (2040–2069) and the long term (2070–2099). Algorithms for each species were applied to generate models that were assessed by comparison of probabilities and observations (area under the curve, true skill statistics, Boyce index, sensitivity, correct classification rate), niches overlap (Schoener's D, Hellinger's I), geographical similarity (interquartile range) and ecological realism.

Models built demonstrated very good predictive accuracy and sensitivity, without overfitting risk. A medium overlap in the historical and RCPs environmental conditions were obtained, therefore the models can be considered transferable and results accurate because only some isolated points were detected as outliers, corresponding to low probabilities.

The areas of S. polyschides and G. spinosum have been identified to be dramatically reduced, meanwhile S. muticum and C. baccata were predicted to expand their range. P. canaliculata was expected to keep its sites of presence but with a decrease in its probability of occurrence. For all species it was remarkable the importance of hydrodynamic variables and parameters representing extreme conditions. Spatially predictions of the potential species and areas at risk are decisive for defining management strategies and resource allocation. The performance and usefulness of the approach applied in this study have been demonstrated for algae with different ecological requirements (from upper littoral to subtidal) and distributional patterns (native and invasive), therefore results can be used by marine planners with different goals: marine protected areas designation, monitoring efforts guiding, invasions risk assessment or aquaculture facilities zonation.

The Rapidly Changing Arctic and Its Impact on Global Climate

Zhao J, Zhong W, Diao Y, Cao Y. The Rapidly Changing Arctic and Its Impact on Global Climate. Journal of Ocean University of China [Internet]. 2019 ;18(3):537 - 541. Available from: https://link.springer.com/article/10.1007/s11802-019-3890-x
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Arctic sea ice has significant seasonal variability. Prior to the 2000s, it retreated about 15% in summer and fully recovered in winter. However, by the year 2007, Arctic sea ice extent experienced a catastrophic decline to about 4.28×106 km2, which was 50% lower than conditions in the 1950s to the 1970s (Serreze et al., 2008). That was a record low over the course of the modern satellite record, since 1979 (note that the year 2012 became the new record low). This astonishing event drew wide-ranging attention in 2007-2009 during the 4th International Polar Year. The dramatic decline of sea ice attracts many scientists' interest and has become the focus of intense research since then. Currently, sea ice retreat is not only appearing around the marginal ice zone, but also in the pack ice inside the central Arctic (Zhao et al., 2018). In fact, premonitory signs had already been seen through other evidence. Before the disintegration of the Soviet Union, US naval submarines had been conducting an extensive survey under the sea ice and taking measurements of sea ice thickness. Their measurements revealed a gradual decrease of ice thickness to 1.8 m during winter by the end of the 20th century, in contrast to the climatological mean of 3.1m (Rothrock et al., 1999). However, this alarming result did not draw much attention since the Arctic was still severely cold at that time.

Systematic Review and Meta-Analysis Toward Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying Pteropods and Interactions With Warming

Bednaršek N, Feely RAlan, Howes EL, Hunt BPV, Kessouri F, León P, Lischka S, Maas AE, McLaughlin K, Nezlin NP, et al. Systematic Review and Meta-Analysis Toward Synthesis of Thresholds of Ocean Acidification Impacts on Calcifying Pteropods and Interactions With Warming. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00227/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_993741_45_Marine_20190521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Interpreting the vulnerability of pelagic calcifiers to ocean acidification (OA) is enhanced by an understanding of their critical thresholds and how these thresholds are modified by other climate change stressors (e.g., warming). To address this need, we undertook a three-part data synthesis for pteropods, one of the calcifying zooplankton group. We conducted the first meta-analysis and threshold analysis of literature characterizing pteropod responses to OA and warming by synthetizing dataset comprising of 2,097 datapoints. Meta-analysis revealed the extent to which responses among studies conducted on differing life stages and disparate geographies could be integrated into a common analysis. The results demonstrated reduced calcification, growth, development, and survival to OA with increased magnitude of sensitivity in the early life stages, under prolonged duration, and with the concurrent exposure of OA and warming, but not species-specific sensitivity. Second, breakpoint analyses identified OA thresholds for several endpoints: dissolution (mild and severe), calcification, egg development, shell growth, and survival. Finally, consensus by a panel of pteropod experts was used to verify thresholds and assign confidence scores for five endpoints with a sufficient signal: noise ratio to develop life-stage specific, duration-dependent thresholds. The range of aragonite saturation state from 1.5–0.9 provides a risk range from early warning to lethal impacts, thus providing a rigorous basis for vulnerability assessments to guide climate change management responses, including an evaluation of the efficacy of local pollution management. In addition, meta-analyses with OA, and warming shows increased vulnerability in two pteropod processes, i.e., shell dissolution and survival, and thus pointing toward increased threshold sensitivity under combined stressor effect.

The U.S. Integrated Ocean Observing System: Governance Milestones and Lessons From Two Decades of Growth

Snowden J, Hernandez D, Quintrell J, Harper A, Morrison R, Morell J, Leonard L. The U.S. Integrated Ocean Observing System: Governance Milestones and Lessons From Two Decades of Growth. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00242/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_993741_45_Marine_20190521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Reflecting on two decades of the U.S. Integrated Ocean Observing System (IOOS) is particularly timely during the OceanObs'19 meeting. Over the past twenty years since the first OceanObs meeting was convened, U.S. IOOS has advanced from regional proofs of concept to a national, sustained enterprise. U.S. IOOS has grown to include 17 Federal partners and 11 Regional Associations (RAs) that implement regional observing systems covering all U.S. coasts and Great Lakes with activities spanning from head of tide to the U.S. exclusive economic zone (EEZ). The National Oceanographic and Atmospheric Administration (NOAA), as lead agency, provides guidance and national-level coordination. An interagency body, the Integrated Ocean Observation Committee (IOOC), communicates across federal agencies and ensures IOOS maintains strong connections to the Global Ocean Observing System (GOOS). Additionally, a federal advisory committee, non-federal association, and various informal partnerships further inform and advance the IOOS enterprise. This governance structure fosters both national consistency, regional flexibility, and global contributions addressing the diverse needs of U.S. coastal and Great Lakes stakeholders.

Impacts of Ocean Warming on Coralline Algal Calcification: Meta-Analysis, Knowledge Gaps, and Key Recommendations for Future Research

Cornwall CE, Diaz-Pulido G, Comeau S. Impacts of Ocean Warming on Coralline Algal Calcification: Meta-Analysis, Knowledge Gaps, and Key Recommendations for Future Research. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00186/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_993741_45_Marine_20190521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coralline algae are foundation species in many hard-bottom ecosystems acting as a settlement substrate, and binding together and even creating reefs in some locations. Ocean acidification is known to be a major threat to coralline algae. However, the effects of ocean warming are less certain. Here we bring multiple lines of evidence together to discuss the potential impacts of ocean warming on these ecologically crucial taxa. We use a meta-analysis of 40 responses within 14 different studies available which assessed the effects of increasing temperature on coralline algal calcification in laboratory experiments. We find a net negative impact of increasing temperature on coralline algal calcification at 5.2°C above ambient conditions. Conversely, negative effects are observed when temperature drops below 2.0°C from ambient conditions. We propose that some coralline algae will be more capable of both acclimatizing and locally adapting to increasing ocean temperatures over the coming decades. This is because many species possess short generation times, the ability to opportunistically rapidly utilize open space, and relatively high phenotypic plasticity. However, less resistant and resilient species will be those that are long-lived, those with long generation times, or with narrow thermal tolerances (e.g., tropical taxa living close to their thermal maxima). Additionally, ocean warming will occur simultaneously with ocean acidification, a potentially greater threat to coralline algae, which could also reduce any tolerance to ocean warming for many species. To maximize the potential to accurately determine how coralline algae will respond to future ocean warming and marine heatwaves, future research should use environmentally relevant temperature treatments, use appropriate acclimation times and follow best practices in experimental design.

Pages

Subscribe to RSS - 2019-05-29