Literature Library

Currently indexing 8156 titles

Plastic Ingestion in Post-hatchling Sea Turtles: Assessing a Major Threat in Florida Near Shore Waters

Eastman CB, Farrell JA, Whitmore L, Ramia DRRollins, Thomas RS, Prine J, Eastman SF, Osborne TZ, Martindale MQ, Duffy DJ. Plastic Ingestion in Post-hatchling Sea Turtles: Assessing a Major Threat in Florida Near Shore Waters. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00693/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1418755_45_Marine_20200903_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Pollution from anthropogenic marine debris, particularly buoyant plastics, is ubiquitous across marine ecosystems. Due to the persistent nature of plastics in the environment, their buoyancy characteristics, degradation dynamics, and ability to mimic the behavior of natural prey, there exists significant opportunity for marine organisms to ingest these man-made materials. In this study we examined gastrointestinal (GI) tracts of 42 post-hatchling loggerhead (Caretta caretta) sea turtles stranded in Northeast Florida. Necropsies revealed abundant numbers of plastic fragments ranging from 0.36 to 12.39 mm in size (length), recovered from the GI tracts of 39 of the 42 animals (92.86%), with GI burdens ranging from 0 to 287 fragments with a mass of up to 0.33 g per turtle. Post-hatchlings weighed from 16.0 to 47.59 g yielding a plastic to body weight percentage of up to 1.23%. Several types of plastic fragments were isolated, but hard fragments and sheet plastic were the most common type, while the dominant frequency of fragment color was white. Fragment size and abundance mixed with natural gut contents suggests significant negative health consequences from ingestion in animals at this life stage. Gaining greater insight into the prevalence of plastic ingestion, the types of plastic and the physiological effects of plastic consumption by multiple life-stages of sea turtles will aid the prioritization of mitigation efforts for the growing marine debris problem. This report demonstrates that plastic ingestion is a critical issue for marine turtles from the earliest stages of life.

Large-Scale Variability of Physical and Biological Sea-Ice Properties in Polar Oceans

Castellani G, Schaafsma FL, Arndt S, Lange BA, Peeken I, Ehrlich J, David C, Ricker R, Krumpen T, Hendricks S, et al. Large-Scale Variability of Physical and Biological Sea-Ice Properties in Polar Oceans. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00536/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In this study, we present unique data collected with a Surface and Under-Ice Trawl (SUIT) during five campaigns between 2012 and 2017, covering the spring to summer and autumn transition in the Arctic Ocean, and the seasons of winter and summer in the Southern Ocean. The SUIT was equipped with a sensor array from which we retrieved: sea-ice thickness, the light field at the underside of sea ice, chlorophyll a concentration in the ice (in-ice chl a), and the salinity, temperature, and chl a concentration of the under-ice water. With an average trawl distance of about 2 km, and a global transect length of more than 117 km in both polar regions, the present work represents the first multi-seasonal habitat characterization based on kilometer-scale profiles. The present data highlight regional and seasonal patterns in sea-ice properties in the Polar Ocean. Light transmittance through Arctic sea ice reached almost 100% in summer, when the ice was thinner and melt ponds spread over the ice surface. However, the daily integrated amount of light under sea ice was maximum in spring. Compared to the Arctic, Antarctic sea-ice was thinner, snow depth was thicker, and sea-ice properties were more uniform between seasons. Light transmittance was low in winter with maximum transmittance of 73%. Despite thicker snow depth, the overall under-ice light was considerably higher during Antarctic summer than during Arctic summer. Spatial autocorrelation analysis shows that Arctic sea ice was characterized by larger floes compared to the Antarctic. In both Polar regions, the patch size of the transmittance followed the spatial variability of sea-ice thickness. In-ice chl a in the Arctic Ocean remained below 0.39 mg chl a m−2, whereas it exceeded 7 mg chl a m−2 during Antarctic winter, when water chl a concentrations remained below 1.5 mg chl a m−2, thus highlighting its potential as an important carbon source for overwintering organisms. The data analyzed in this study can improve large-scale physical and ecosystem models, habitat mapping studies and time series analyzed in the context of climate change effects and marine management.

From plentiful to critically endangered: Demographic evidence of the artisanal fisheries impact on the smalltail shark (Carcharhinus porosus) from Northern Brazil

Santana FMarcante, Feitosa LManir, Lessa RPaula. From plentiful to critically endangered: Demographic evidence of the artisanal fisheries impact on the smalltail shark (Carcharhinus porosus) from Northern Brazil Lucifora L. PLOS ONE [Internet]. 2020 ;15(8):e0236146. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236146
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The smalltail shark, Carcharhinus porosus, was the most abundant elasmobranch species in fisheries off Brazil’s northern coast (BNC) in the 1980s, but its population has been declining since the 1990s. For this reason, a demographic analysis is necessary to determine the extent of this decline and the fishing effect on the BNC’s population. Therefore, we performed a stochastic demographic analysis of the population in the BNC, and considered its global center of abundance. Smalltail shark specimens (n = 937) were collected with gillnets in Maranhão state, eastern BNC, in the 1980s with sizes ranging between 29.6 and 120.0 cm total length. Most of the individuals (90.6%) caught were juveniles (< 6 years-old), and the mortality and exploitation rates showed that the species was overexploited (92.3% above the fishing mortality corresponding to the population equilibrium threshold). The smalltail shark’s biological characteristics, such as slow growth and low fecundity, demonstrate that it is one of the least resilient species among similar sized coastal sharks in the region. All these factors yielded an annual decrease of 28% in the intrinsic population growth rate, resulting in a population decline of more than 90% in only 10 years, and much higher for the current period. This set of features comprising fishing recruitment occurring upon juveniles, overfishing, and intrinsically low resilience make the population unable to sustain fishing pressure and severely hamper biological recruitment, thus causing this drastic population decline. Furthermore, several local extinctions for this species in the northeastern and southeastern regions of Brazil highlight its concerning conservation scenario. Therefore, since similar fisheries characteristics occur throughout its distribution range, Cporosus fits the criteria E of the IUCN Red List for a critically endangered species and urgent conservation measures are needed to prevent its extinction in the near future.

Impact of climate change on the primary production and related biogeochemical cycles in the coastal and sea ice zone of the Southern Ocean

Kim S-U, Kim K-Y. Impact of climate change on the primary production and related biogeochemical cycles in the coastal and sea ice zone of the Southern Ocean. Science of The Total Environment [Internet]. 2021 ;751:141678. Available from: https://www.sciencedirect.com/science/article/pii/S0048969720352074?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Climate change in the Southern Hemisphere has exerted impact on the primary production in the Southern Ocean (SO). Using a recently released reanalysis dataset on global biogeochemistry, a comprehensive analysis was conducted on the complex biogeochemical seasonal cycle and the impact of climate change with a focus in areas within the meridional excursion of the sea ice boundary—coastal and continental shelf zone (CCSZ) and seasonal sea ice zone (SIZ). The seasonal cycles of primary production and related nutrients are closely linked with the seasonal changes in sea ice and sea surface temperatures. As sea ice retreats and allows energy and gas exchange across the sea surface, phytoplankton growth is initiated, consuming accumulated nutrients within the shallow depth of ~40 m. The seasonal evolutions of physical, biological and chemical variables show both spatial and temporal consistency with each other. Climate change has altered the timing and amplitude of the seasonal cycle. While primary production has generally increased along with an intensified uptake of CO2, some areas show a reduction in production (e.g., Prydz Bay, eastern Indian Ocean). In the CCSZ, increased iron utilization and light availability allowed production to be increased. However, the mechanism by which these factors are altered varies from one location to another, including changes in sea ice cover, surface stratification, and downwelling/upwelling. In the SIZ, where iron is generally a limiting factor, iron supply is a key driver of changes in primary production regardless of other nutrients. There is a clear influence of climatic change on the biogeochemical cycle although the signal is still weak.

Combined impact of summer heat waves and coastal upwelling in the Baltic Sea

Suursaar Ü. Combined impact of summer heat waves and coastal upwelling in the Baltic Sea. Oceanologia [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S0078323420300622?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Under warming climates, heat waves (HWs) have occurred in increasing intensity in Europe. Also, public interest towards HWs has considerably increased over the last decades. The paper discusses the manifestations of the summer 2014 HW and simultaneously occurring coastal upwelling (CU) events in the Gulf of Finland. Caused by an anticyclonic weather pattern and persisting easterly winds, CUs evolved along the southern coast of the Gulf in four episodes from June to August. Based on data from coastal weather stations, 115 days-long measurements with a Recording Doppler Current Profiler (RDCP) oceanographic complex and sea surface temperature (SST) satellite images, the partly opposing impacts of these events are analysed. Occurring on the background of a marine HW (up to 26°C), the CU-forced SST variations reached about 20 degrees. At the 10 m deep RDCP mooring location, a drop from 21.5 to 2.9°C occurred within 60 hours. Salinity varied between 3.6 and 6.2 and an alongshore coastal jet was observed; the statistically preferred westerly current frequently flowed against the wind. Locally, the cooling effect of the CUs occasionally mitigated the overheating effects by the HWs both in the sea and on the marine-land boundary. However, in the elongated channel-like Gulf of Finland, upwelling at one coast is usually paired with downwelling at the opposite coast, and simultaneously or subsequently occurring HWs and CUs effectively contribute to heat transfer from the atmosphere to the water mass. Rising extremes of HWs and rapid variations by CUs may put the ecosystems under increasing stress.

Does Lack of Knowledge Lead to Misperceptions? Disentangling the Factors Modulating Public Knowledge About and Perceptions Toward Sharks

Afonso AS, Roque P, Fidelis L, Veras L, Conde A, Maranhão P, Leandro S, Hazin FHV. Does Lack of Knowledge Lead to Misperceptions? Disentangling the Factors Modulating Public Knowledge About and Perceptions Toward Sharks. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00663/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Identifying sources of variability in public perceptions and attitudes toward sharks can assist managers and conservationists with developing effective strategies to raise awareness and support for the conservation of threatened shark species. This study examined the effect of several demographic, economic and socioenvironmental factors on the quality of knowledge about and perceptions toward sharks in two contrasting scenarios from northeastern Brazil: a shark hazardous coastal region and a marine protected insular area. Ordered logistic regression models were built using Likert data collected with a self-administered questionnaire survey (N = 1094). A clear relationship between education, knowledge and perceptions was found, with low education level and knowledge of sharks resulting in more negative perceptions toward these species. Prejudice toward sharks stemmed as a potentially limiting factor because the positive effects of other variables such as affinity for nature and specific knowledge about sharks were superseded by the effects of negative prejudice. Other practical factors such as age, economic level, and gender, also influenced respondent’s knowledge and perceptions and could provide a guidance for optimizing socioenvironmental gains relative to public engagement efforts. Results also suggested that populations inhabiting regions with high shark bite incidence likely require distinct outreach methods because some factors underlying knowledge and perception dynamics exhibited structural differences in their effects when compared to the trends observed in a marine protected area. Altogether, public perceptions and attitudes toward sharks could be feasibly enhanced with educational development and nature experiencing strategies. Moreover, disseminating shark-specific knowledge across the society might catalyze support for the conservation of these species in a cost-effective way. This study provides a potentially useful socioenvironmental framework to deal with the human dimensions of shark management and to strengthen conservation policies aimed at promoting societal compliance with pro-environmental values, which is crucial to endow shark populations with effective protection from anthropogenic threats.

Disparities in Spawning Times Between in situ and ex situ Pillar Corals

Neely KL, Lewis CL, Macaulay KA. Disparities in Spawning Times Between in situ and ex situ Pillar Corals. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00643/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Contrasts in spawning time between in situ and ex situ colonies of the pillar coral Dendrogyra cylindrus were assessed by comparing 8 years of in situ spawning observations with 3 years of observations on ex situ corals held in outdoor flow-through tanks. In situ colonies exhibited a 3-day spawning window, with peak spawning occurring three nights after the full moon and 90 (males) – 96 (females) min after sunset. The ex situ spawning window extended across 7 days, with a peak on nights 4–5 after the full moon; females continued to spawn through night 8. Ex situ spawning occurred ∼50 min later than in situ spawning, and the spawning window for ex situ females was significantly greater than for in situ colonies. Fragments held ex situ for as few as 10 days experienced delayed spawning times, but corals held for greater than one lunar year exhibited significantly later spawning than those held less than one lunar year. Early and late full moons resulted in earlier male spawn time and asynchronous gamete release between males and females. Comparing spawn times throughout the Caribbean identified distance from lighted shorelines as a strong correlate with spawn time in minutes after sunset; proximity to artificial light resulted in delayed spawn times. We propose that artificial lights are red-shifting the twilight spectrum and affecting corals’ perception of lighting cues that trigger spawning. Coral colonies held at outdoor ex situ facilities, which are subject to even higher levels of artificial light, exhibit even further asynchrony in spawning time as well as spawning night. The effects of widespread and increasing light pollution on spawning synchrony may represent a potential stressor that could inhibit natural reef recovery.

Beyond Reef Restoration: Next-Generation Techniques for Coral Gardening, Landscaping, and Outreach

Schmidt-Roach S, Duarte CM, Hauser CAE, Aranda M. Beyond Reef Restoration: Next-Generation Techniques for Coral Gardening, Landscaping, and Outreach. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00672/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Anthropogenic disturbances have led to the degradation of coral reef systems globally, calling for proactive and progressive local strategies to manage individual ecosystems. Although restoration strategies such as assisted evolution have recently been proposed to enhance the performance of coral reef populations in response to current and future stressors, scalability of these concepts and implementation in habitat or ecosystem-wide management remains a major limitation for logistical and financial reasons. We propose to implement these restoration efforts into an ecotourism approach that embeds land-based coral gardening efforts as architectural landscape elements to enhance and beautify coastal development sites, providing additional value and rationale for ecotourism stakeholders to invest. Our approach extends and complements existing concepts integrating coral reef restoration in ecotourism projects by creating a participatory platform that can be experienced by the public, while effectively integrating numerous restoration techniques, and providing opportunities for long-term restoration and monitoring studies. In this context, we discuss options for pre-selection of corals and systematic, large-scale monitoring of coral genotype performance targeting higher resilience to future stressors. To reduce operating costs during out-planting, we suggest to create coral seeding hubs, clusters of closely transplanted conspecifics, to quickly and efficiently restore/enhance active reproduction. We discuss our land-based coral gardening approach in the context of positive impacts beyond reef restoration. By restoring and strengthening resilience of local populations, we believe this strategy will contribute to a net positive conservation impact, create a culture on restoration and enhance and secure blue economical investments that rely on healthy marine systems.

An Interview-Based Approach to Assess Angler Practices and Sea Turtle Captures on Mississippi Fishing Piers

Cook M, Dunch VS, Coleman AT. An Interview-Based Approach to Assess Angler Practices and Sea Turtle Captures on Mississippi Fishing Piers. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00655/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

During 2010–2015, the Mississippi Sea Turtle Stranding and Salvage Network (STSSN) documented 1,073 sea turtles, primarily juvenile Kemp’s ridleys (Lepidochelys kempii), incidentally caught by recreational anglers. Due to increases in interactions, an angler interview survey was conducted during 2013 at six Mississippi fishing piers. Anglers were interviewed about fishing practices and sea turtle interactions. Interviewers conducted outreach and distributed Rehabilitation Hotline business cards. Angler participation was 86%, and over 60% used J-hooks and were not targeting specific species, which was similar to data collected from incidental captures reported to the STSSN. Over 58% of anglers used dead shrimp followed by cut up fish for bait. This greatly differs from STSSN reported captured sea turtles where 60% were caught on cut up fish and only 6% on dead shrimp. Over 18% of participants captured at least one sea turtle in the last 12 months. Anglers stated that nearly half of the sea turtles were taken for rehabilitation, 41% were released by the angler and 10% broke the line and swam away. Only 60% of anglers reported the capture because many were unaware they should report it. During and after the survey period, there was an increase in reported incidental captures, possibly indicating outreach is an effective means of increasing awareness and reporting. Recently, NOAA Fisheries developed a survey that can be used nationally to conduct similar research. We recommend conducting angler surveys every few years unless there is a noticeable change in incidental capture trends or angler practices.

Quantifying the Impact of Climate Change on Marine Diazotrophy: Insights From Earth System Models

Wrightson L, Tagliabue A. Quantifying the Impact of Climate Change on Marine Diazotrophy: Insights From Earth System Models. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00635/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Nitrogen fixation is a major source of new nitrogen to the ocean, supporting biological productivity in the large nitrogen-limited tropical oceans. In Earth System Models, the response of nitrogen fixation to climate change acts in concert with projected changes to physical nitrogen supply to regulate the response of primary productivity in nitrogen-limited regions. We examine the response of diazotrophy from nine Earth System Models and find large variability in the magnitude and spatial pattern of nitrogen fixation in both contemporary periods and future projections. Although Earth System Models tend to agree that nitrogen fixation will decrease over the next century, strong regional variations exist, especially in the tropical Pacific which may counteract the response of the Atlantic and Indian oceans. As the climate driven trend of nitrogen fixation emerges by mid-century in the RCP8.5 scenario, on regional scales it may modulate the broad climate trends in productivity that emerge later in the century. The generally poor skill and lack of agreement amongst Earth System Models indicates that the climate response of nitrogen fixation is a key uncertainty in projections of future ocean primary production in the tropical oceans. Overall, we find that the future evolution of nitrogen fixation plays an important role in shaping future trends in net primary production in the tropics, but the poor skill of models highlights significant uncertainty, especially considering the role of multiple concurrent drivers.

Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United States

Montes E, Djurhuus A, Muller-Karger FE, Otis D, Kelble CR, Kavanaugh MT. Dynamic Satellite Seascapes as a Biogeographic Framework for Understanding Phytoplankton Assemblages in the Florida Keys National Marine Sanctuary, United States. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00575/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Physical, chemical, geological, and biological factors interact in marine environments to shape complex but recurrent patterns of organization of life on multiple spatial and temporal scales. These factors define biogeographic regions in surface waters that we refer to as seascapes. We characterize seascapes for the Florida Keys National Marine Sanctuary (FKNMS) and southwest Florida shelf nearshore environment using multivariate satellite and in situ measurements of Essential Ocean Variables (EOVs) and Essential Biodiversity Variables (EBVs). The study focuses on three periods that cover separate oceanographic expeditions (March 11–18, May 9–13, and September 12–19, 2016). We collected observations on bio-optical parameters (particulate and dissolved spectral absorption coefficients), phytoplankton community composition, and hydrography from a ship. Phytoplankton community composition was evaluated using (1) chemotaxonomic analysis (CHEMTAX) based on high-performance liquid chromatography (HPLC) pigment measurements, and (2) analysis of spectral phytoplankton absorption coefficients (aphy). Dynamic seascapes were derived by combining satellite time series of sea surface temperature, chlorophyll-a concentration, and normalized fluorescent line height (nFLH) using a supervised thematic classification. The seascapes identified areas of different salinity and nutrient concentrations where different phytoplankton communities were present as determined by hierarchical cluster analyses of HPLC pigments and aphy spectra. Oligotrophic, Mesotrophic, and Transition seascape classes of deeper offshore waters were dominated by small phytoplankton (<2 μm; ∼ 40–60% of total cell abundance). In eutrophic, optically shallow coastal seascapes influenced by fresh water discharge, the phytoplankton was dominated by larger taxa (>60%). Spectral analysis of aphy indicated higher absorption levels at 492 and 550 nm wavelengths in seascapes carrying predominantly small phytoplankton than in classes dominated by larger taxa. Seascapes carrying large phytoplankton showed absorption peaks at the 673 nm wavelength. The seascape framework promises to be a tool to detect different biogeographic domains quickly, providing information about the changing environmental conditions experienced by coral reef organisms including coral, sponges, fish, and higher trophic levels. The effort illustrates best practices developed under the Marine Biodiversity Observation Network (MBON) demonstration project, in collaboration with the South Florida Ecosystem Restoration Research (SFER) project managed by the Atlantic Oceanographic and Meteorological Laboratory of NOAA (AOML-NOAA).

Experiences With Governance in Three Marine Conservation Zoning Initiatives: Parameters for Assessment and Pathways Forward

Muhl E-K, Dias ACarolina E, Armitage D. Experiences With Governance in Three Marine Conservation Zoning Initiatives: Parameters for Assessment and Pathways Forward. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00629/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In this perspective paper, we examine the challenges of governance in three marine conservation settings where rights, access to resources and zoning intersect with changing social and ecological conditions: (1) Tsitsikamma Marine Protected Area in South Africa; (2) Marine Protected Area of the Northern Coast of São Paulo (APAMLN) in Brazil; and (3) Gwaii Haanas National Marine Conservation Area Reserve in Canada. Many MPAs and related zoning initiatives are located adjacent to coastal communities that rely on marine and coastal resources for their livelihoods. Thus, processes of zoning must often address local use of natural resources which can be perceived by decision-makers and regulators as problematic. Our analysis highlights how conservation zoning intersects with the perception of diverse stakeholders regarding a range of governance dimensions, including: (1) levels of participation and compliance; (2) the clarity of zoning and conservation objectives; (3) livelihood impacts and benefits; (4) evidence of ecological and conservation benefits; and (5) the influence on sense of place. Pathways forward to address the challenges of governance associated with zoning include the importance of co-producing knowledge for more robust zoning outcomes, and situating zoning processes in a co-management context in which power and authority are more evenly distributed.

Large-Scale Sea Urchin Culling Drives the Reduction of Subtidal Barren Grounds in the Mediterranean Sea

Guarnieri G, Bevilacqua S, Figueras N, Tamburello L, Fraschetti S. Large-Scale Sea Urchin Culling Drives the Reduction of Subtidal Barren Grounds in the Mediterranean Sea. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00519/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Increasing anthropogenic pressures are causing long-lasting regime shifts from high-diversity ecosystems to low-diversity ones. In the Mediterranean Sea, large expanses of rocky subtidal habitats characterized by high diversity have been completely degraded to the barren state due to the high grazing pressure exerted by sea urchins, which could persist for a long time. In several areas of the world, removal of sea urchins has been found to have a positive effect on the recovery of overexploited subtidal rocky habitats. This study assessed, for the first time in the Mediterranean Sea, the effects of extensive sea urchin culling on the recovery of subtidal reefs from the barren state. We tested this approach within a Marine Protected Area where a combination of oligotrophic conditions, general depletion of fish stocks, dramatically high sea urchin densities, and the large expanses of barren grounds caused by date mussel fishery have hampered the natural recovery of shallow rocky reefs. Culling intervention (through hammering) was carried out in spring 2015, covering an area of 1.2 hectares at about 5 m depth. The effects of sea urchin removal were monitored at regular intervals for a time span of 3 years and were compared with two control sites adjacent to the culling area. We documented a progressive reduction in the extent of barren grounds in the fully protected area after the intervention. Also, very low re-colonization of sea urchins was observed during the experiment, so that no additional extensive culling was necessary. Our findings suggested sea urchin culling as a promising practice, also considering the limited costs of the intervention. However, since the reduction in extent of barren grounds was largely driven by turf-forming algae, caution is needed in the interpretation of the outcomes in terms of restoration, and results are discussed considering the factors involved in the observed shift and the synergies to be carried out for a full recovery of the system.

Lessons Learnt From Linking Global Recommendations With Localized Marine Restoration Schemes and Policy Options by Using Mixed Methods

Krause G, Wolf C, Happe A-K, Hauck J, Buttigieg PLuigi, Fuchs N, Scheve J, König C, Wittmer H, Raab K. Lessons Learnt From Linking Global Recommendations With Localized Marine Restoration Schemes and Policy Options by Using Mixed Methods. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00532/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In order to advance ongoing efforts in the (still emerging) field of marine restoration, different forms of knowledge must be combined: not only the biological and technical aspects, but also the social and cultural dimensions of marine restoration efforts. This calls for a newly combined array of methods that allows for a bridging of these different knowledge dimensions. Drawing on our experiences from the ongoing knowledge transfer processes of the INTERNAS project (Scientific Transfer of the results of INTERNational Assessments in the field of Earth and Environmental Research into the German policy context), we provide an overview of methods that were used to link global recommendations with localized marine restoration schemes and policy options. Using a mixed methods approach, we were able to capture and understand the pathways of knowledge transfer from globally synthesized scientific knowledge to local realities related to protecting and enhancing marine biodiversity in Germany. With this structured knowledge transfer approach, actionable solutions for marine conservation and restoration activities could be tailored to the specific national and regional circumstances. Using participatory methods, framework conditions like ecological, social, legal, and sectoral value judgment dimensions can be identified. This allows for the development of concerted solutions and creates a common ground for good governance towards marine restoration. When scientists engage not only as experts but also as reflexive facilitators in such participatory processes, it is ensured that more inclusive forms of knowledge are fostered that are necessary to better anticipate the potentials and likely pitfalls that marine restoration efforts may encounter. We conclude that existing knowledge on ecosystems, their goods and services as well as societal expectations need to be understood from the onset in any kind of marine restoration effort.

Movements of Juvenile Green Turtles (Chelonia mydas) in the Nearshore Waters of the Northwestern Gulf of Mexico

Metz TL, Gordon M, Mokrech M, Guillen G. Movements of Juvenile Green Turtles (Chelonia mydas) in the Nearshore Waters of the Northwestern Gulf of Mexico. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00647/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Satellite telemetry is a valuable tool for examining long-term, large scale movements of highly migratory species. Tracking data can be used by resource managers to protect habitat and ensure recovery of threatened and endangered species. Few tracking studies have focused on habitat use patterns of juvenile, neritic stage turtles. Satellite tracking surveys were conducted to assess juvenile green turtle movements in the northwestern Gulf of Mexico during 2006–2010. Fifteen turtles were equipped with platform terminal transmitters (PTT; 3 rehabilitated, 12 wild). Mean track duration was 129 days (range: 16–344 days). A hierarchical switching state-space model (hSSM) was applied to extrapolate population level foraging/resident versus migratory movements. All turtles displayed residency in Texas bays during summer months (March-November) while five individuals exhibited seasonal migrations into Mexican waters following passage of strong cold fronts in December and January. Winter (e.g., Mexico) versus summer (e.g., Texas) core areas were not significantly different. Winter 95% contours were significantly larger than summer (summer: 125.4 ± 47.5 km2n = 15; winter: 274.4 ± 252.9 km2n = 5). Space-time hot spot analysis provided a new and unique approach for conducting spatiotemporal cluster analysis, and was applied to migratory turtles to determine monthly changes in distribution and habitat associations. Changes in hot spots over time were detected within the lower regions of the Laguna Madre with punctuated intervals of hot spot activity. Upper regions of the Laguna Madre were identified as new hot spots in the later part of the year (e.g., Fall/Winter). Within core areas in Texas, seagrasses comprised an average density of 32.4% while 87.5% of the total available seagrass habitat occurred within the 95% KDE contour. Based on PTT and historic tide station surface water temperatures, all turtles tracked over winter migrations and residencies (n = 5) remained within waters > 15°C, suggesting a threshold temperature at which migration behavior may be initiated. Continued recovery of threatened and endangered sea turtle populations depends on a comprehensive examination of patterns in habitat use. These data suggest cooperation between the United States and Mexico is needed to protect critical habitat and enhance recovery of this species.

Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications

Henley SF, Cavan EL, Fawcett SE, Kerr R, Monteiro T, Sherrell RM, Bowie AR, Boyd PW, Barnes DKA, Schloss IR, et al. Changing Biogeochemistry of the Southern Ocean and Its Ecosystem Implications. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00581/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Southern Ocean plays a critical role in regulating global climate as a major sink for atmospheric carbon dioxide (CO2), and in global ocean biogeochemistry by supplying nutrients to the global thermocline, thereby influencing global primary production and carbon export. Biogeochemical processes within the Southern Ocean regulate regional primary production and biological carbon uptake, primarily through iron supply, and support ecosystem functioning over a range of spatial and temporal scales. Here, we assimilate existing knowledge and present new data to examine the biogeochemical cycles of iron, carbon and major nutrients, their key drivers and their responses to, and roles in, contemporary climate and environmental change. Projected increases in iron supply, coupled with increases in light availability to phytoplankton through increased near-surface stratification and longer ice-free periods, are very likely to increase primary production and carbon export around Antarctica. Biological carbon uptake is likely to increase for the Southern Ocean as a whole, whilst there is greater uncertainty around projections of primary production in the Sub-Antarctic and basin-wide changes in phytoplankton species composition, as well as their biogeochemical consequences. Phytoplankton, zooplankton, higher trophic level organisms and microbial communities are strongly influenced by Southern Ocean biogeochemistry, in particular through nutrient supply and ocean acidification. In turn, these organisms exert important controls on biogeochemistry through carbon storage and export, nutrient recycling and redistribution, and benthic-pelagic coupling. The key processes described in this paper are summarised in the Graphical Abstract. Climate-mediated changes in Southern Ocean biogeochemistry over the coming decades are very likely to impact primary production, sea-air CO2 exchange and ecosystem functioning within and beyond this vast and critically important ocean region.

Understanding Regional and Seasonal Variability Is Key to Gaining a Pan-Arctic Perspective on Arctic Ocean Freshening

Brown KA, Holding JM, Carmack EC. Understanding Regional and Seasonal Variability Is Key to Gaining a Pan-Arctic Perspective on Arctic Ocean Freshening. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00606/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Arctic marine system is large and heterogeneous, harsh and remote, and now changing very rapidly, all of which contribute to our current inadequate understanding of its basic structures and functions. In particular, many key processes within and external to the Arctic Ocean are intrinsically linked to its freshwater system, which itself is undergoing rapid and uncertain change. The role of the freshwater system (delivery, disposition, storage, and export) in the Arctic Ocean has recently received significant attention; however, due to the fact that few studies are able to cover all regions and seasons equally, we still lack an accessible, unified pan-Arctic representation generalizing the impacts of freshwater on the upper Arctic Ocean where many biological and geochemical interactions occur. This work seeks to distill our current understanding of the Arctic freshwater system, and its impacts, into conceptual diagrams which we use as a basis to speculate on the impact of future changes. We conclude that an understanding of regional and seasonal variability is required in order to gain a pan-Arctic perspective on the physical-geochemical-biological state of the upper Arctic Ocean. As an example of regionality, enhanced stratification due to freshening will be more important in the Pacific influenced Amerasian Basin, which stores the bulk of the freshwater burden, while the Atlantic influenced Eurasian Basin will experience more consequences related to increased heating from advective sources. River influenced coastal regions will experience a mosaic of these and other biogeochemical effects, whereas glacial fjords may follow their own unique trajectories due to the loss of upwelling mechanisms at glacial fronts. As an example of seasonality, the continued modulation of the sea ice freeze-melt cycle has increased the seasonal freshwater burden in the deep basins dramatically as the system progresses toward ice-free summer conditions, but will eventually reverse, reducing the seasonal flux of freshwater by more than half in a future, perennially ice-free ocean. It is our goal that these conceptualizations, based on the current state-of-the-art, will drive hypothesis-based research to investigate the physical-biogeochemical response to a changing freshwater cycle in a future Arctic Ocean with greatly reduced ice cover.

Operating Cabled Underwater Observatories in Rough Shelf-Sea Environments: A Technological Challenge

Fischer P, Brix H, Baschek B, Kraberg A, Brand M, Cisewski B, Riethmüller R, Breitbach G, Möller KOve, Gattuso J-P, et al. Operating Cabled Underwater Observatories in Rough Shelf-Sea Environments: A Technological Challenge. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00551/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Cabled coastal observatories are often seen as future-oriented marine technology that enables science to conduct observational and experimental studies under water year-round, independent of physical accessibility to the target area. Additionally, the availability of (unrestricted) electricity and an Internet connection under water allows the operation of complex experimental setups and sensor systems for longer periods of time, thus creating a kind of laboratory beneath the water. After successful operation for several decades in the terrestrial and atmospheric research field, remote controlled observatory technology finally also enables marine scientists to take advantage of the rapidly developing communication technology. The continuous operation of two cabled observatories in the southern North Sea and off the Svalbard coast since 2012 shows that even highly complex sensor systems, such as stereo-optical cameras, video plankton recorders or systems for measuring the marine carbonate system, can be successfully operated remotely year-round facilitating continuous scientific access to areas that are difficult to reach, such as the polar seas or the North Sea. Experience also shows, however, that the challenges of operating a cabled coastal observatory go far beyond the provision of electricity and network connection under water. In this manuscript, the essential developmental stages of the “COSYNA Shallow Water Underwater Node” system are presented, and the difficulties and solutions that have arisen in the course of operation since 2012 are addressed with regard to technical, organizational and scientific aspects.

Site-fidelity and spatial movements of western North Pacific gray whales on their summer range off Sakhalin, Russia

Bröker KCA, Gailey G, Tyurneva OYu., Yakovlev YM, Sychenko O, Dupont JM, Vertyankin VV, Shevtsov E, Drozdov KA. Site-fidelity and spatial movements of western North Pacific gray whales on their summer range off Sakhalin, Russia Griffen BD. PLOS ONE [Internet]. 2020 ;15(8):e0236649. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236649
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Western North-Pacific (WNP) gray whale feeding grounds are off the northeastern coast of Sakhalin Island, Russia and is comprised of a nearshore and offshore component that can be distinguished by both depth and location. Spatial movements of gray whales within their foraging grounds were examined based on 13 years of opportunistic vessel and shore-based photo-identification surveys. Site fidelity was assessed by examining annual return and resighting rates. Lagged Identification Rates (LIR) analyses were conducted to estimate the residency and transitional movement patterns within the two components of their feeding grounds. In total 243 individuals were identified from 2002–2014, among these were 94 calves. The annual return rate over the period 2002–2014 was 72%, excluding 35 calves only seen one year. Approximately 20% of the individuals identified from 2002–2010 were seen every year after their initial sighting (including eight individuals that returned for 13 consecutive years). The majority (239) of the WNP whales were observed in the nearshore area while only half (122) were found in the deeper offshore area. Within a foraging season, there was a significantly higher probability of gray whales moving from the nearshore to the offshore area. No mother-calf pairs, calves or yearlings were observed in the offshore area, which was increasingly used by mature animals. The annual return rates, and population growth rates that are primarily a result of calf production with little evidence of immigration, suggest that this population is demographically self-contained and that both the nearshore and offshore Sakhalin feeding grounds are critically important areas for their summer annual foraging activities. The nearshore habitat is also important for mother-calf pairs, younger individuals, and recently weaned calves. Nearshore feeding could also be energetically less costly compared to foraging in the deeper offshore habitat and provide more protection from predators, such as killer whales.

Citizen science for predicting spatio-temporal patterns in seabird abundance during migration

Martín B, Onrubia A, González-Arias J, Vicente-Vírseda JA. Citizen science for predicting spatio-temporal patterns in seabird abundance during migration Paiva VHugo Rodri. PLOS ONE [Internet]. 2020 ;15(8):e0236631. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236631
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Pelagic seabirds are elusive species which are difficult to observe, thus determining their spatial distribution during the migration period is a difficult task. Here we undertook the first long-term study on the distribution of migrating shearwaters from data gathered within the framework of citizen science projects. Specifically, we collected daily abundance (only abundance given presence) of Balearic shearwaters from 2005 to 2017 from the online databases Trektellen and eBird. We applied machine-learning techniques, specifically Random Forest regression models, to predict shearwater abundance during migration using 15 environmental predictors. We built separated models for pre-breeding and post-breeding migration. When evaluated for the total data sample, the models explained more than 52% of the variation in shearwater abundance. The models also showed good ability to predict shearwater distributions for both migration periods (correlation between observed and predicted abundance was about 70%). However, relative variable importance and variation among the models built with different training data subsamples differed between migration periods. Our results showed that data gathered in citizen science initiatives together with recently available high-resolution satellite imagery, can be successfully applied to describe the migratory spatio-temporal patterns of seabird species accurately. We show that a predictive modelling approach may offer a powerful and cost-effective tool for the long-term monitoring of the migratory patterns in sensitive marine species, as well as to identify at sea areas relevant for their protection. Modelling approaches can also be essential tools to detect the impacts of climate and other global changes in this and other species within the range of the training data.

Pages