Literature Library

Currently indexing 8156 titles

The Paleoecology of Microplastic Contamination

Bancone CEP, Turner SD, Sul JAIvar do, Rose NL. The Paleoecology of Microplastic Contamination. Frontiers in Environmental Science [Internet]. 2020 ;8. Available from: https://www.frontiersin.org/articles/10.3389/fenvs.2020.574008/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1443314_25_Enviro_20200929_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

While the ubiquity and rising abundance of microplastic contamination is becoming increasingly well-known, there is very little empirical data for the scale of their historical inputs to the environment. For many pollutants, where long-term monitoring is absent, paleoecological approaches (the use of naturally-accumulating archives to assess temporal trends) have been widely applied to determine such historical patterns, but to date this has been undertaken only very rarely for microplastics, despite the enormous potential to identify the scale and extent of inputs as well as rates of change. In this paper, we briefly assess the long-term monitoring and paleoecological microplastic literature before considering the advantages and disadvantages of various natural archives (including lake and marine sediments, ice cores and peat archives) as a means to determine historical microplastic records, as well as the range of challenges facing those attempting to extract microplastics from them. We also outline some of the major considerations in chemical, physical and biological taphonomic processes for microplastics as these are critical to the correct interpretation of microplastic paleoecological records but are currently rarely considered. Finally, we assess the usefulness of microplastic paleoecological records as a stratigraphic tool, both as a means to provide potential chronological information, as well as a possible marker for the proposed Anthropocene Epoch.

Snake River sockeye and Chinook salmon in a changing climate: Implications for upstream migration survival during recent extreme and future climates

Crozier LG, Siegel JE, Wiesebron LE, Trujillo EM, Burke BJ, Sandford BP, Widener DL. Snake River sockeye and Chinook salmon in a changing climate: Implications for upstream migration survival during recent extreme and future climates Peacock M. PLOS ONE [Internet]. 2020 ;15(9):e0238886. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0238886
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In 2015, the Pacific marine heat wave, low river flows, and record high water temperatures in the Columbia River Basin contributed to a near-complete failure of the adult migration of endangered Snake River sockeye salmon (Oncorhynchus nerka, NOAA Fisheries 2016). These extreme weather events may become the new normal due to anthropogenic climate change, with catastrophic consequences for endangered species. Existing anthropogenic pressures may amplify vulnerability to climate change, but these potential synergies have rarely been quantified. We examined factors affecting survival of endangered sockeye (Oncorhynchus nerka) and threatened Chinook salmon (Otshawytscha) as they migrated upstream through eight dams and reservoirs to spawning areas in the Snake River Basin. Our extensive database included histories of 17,279 individual fish that migrated since 2004. A comparison between conditions in 2015 and daily temperatures and flows in a regulated basin forced by output from global climate models showed that 2015 did have many characteristics of projected future mean conditions. To evaluate potential salmon responses, we modeled migration timing and apparent survival under historical and future climate scenarios (2040s). For Chinook salmon, adult survival from the first dam encountered to spawning grounds dropped by 4-15%, depending on the climate scenario. For sockeye, survival dropped by ~80% from their already low levels. Through sensitivity analyses, we observed that the adult sockeye migration would need to shift more than 2 weeks earlier than predicted to maintain survival rates typical of those seen during 2008-2017. Overall, the greater impacts of climate change on adult sockeye compared with adult Chinook salmon reflected differences in life history and environmental sensitivities, which were compounded for sockeye by larger effect sizes from other anthropogenic factors. Compared with Chinook, sockeye was more negatively affected by a history of juvenile transportation and by similar temperatures and flows. The largest changes in temperature and flow were projected to be upstream from the hydrosystem, where direct mitigation through hydrosystem management is not an option. Unfortunately, Snake River sockeye have likely lost much of their adaptive capacity with the loss of the wild population. Further work exploring habitat restoration or additional mitigation actions is urgently needed.

Microplastics accumulate to thin layers in the stratified Baltic Sea

Uurasjärvi E, Pääkkönen M, Setälä O, Koistinen A, Lehtiniemi M. Microplastics accumulate to thin layers in the stratified Baltic Sea. Environmental Pollution [Internet]. 2021 ;268:115700. Available from: https://www.sciencedirect.com/science/article/pii/S0269749120363892?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In the Baltic Sea, water is stratified due to differences in density and salinity. The stratification prevents water from mixing, which could affect sinking rates of microplastics in the sea. We studied the accumulation of microplastics to halocline and thermocline. We sampled water with a 100 μm plankton net from vertical transects between halo- and thermocline, and a 30 L water sampler from the end of halocline and the beginning of thermocline. Thereafter, microplastics in the whole sample volumes were analyzed with imaging Fourier transform infrared spectroscopy (FTIR). The plankton net results showed that water column between halo- and thermoclines contained on average 0.92 ± 0.61 MP m−3 (237 ± 277 ng/m−3; mean ± SD), whereas the 30 L samples from the end of halocline and the beginning of thermocline contained 0.44 ± 0.52 MP L−1 (106 ± 209 ng L−1). Hence, microplastics are likely to accumulate to thin layers in the halocline and thermocline. The vast majority of the found microplastics were polyethylene, polypropylene and polyethylene terephthalate, which are common plastic types. We did not observe any trend between the density of microplastics and the sampling depth, probably because biofilm formation affected the sinking rates of the particles. Our results indicate the need to sample deeper water layers in addition to surface waters at least in the stratified water bodies to obtain a comprehensive overview of the abundance of microplastics in the aquatic environment.

A Bayesian approach for assessing the boundary between desirable and undesirable environmental status – An example from a coastal fish indicator in the Baltic Sea

Laurila-Pant M, Mäntyniemi S, Östman Ö, Olsson J, Uusitalo L, Lehikoinen A. A Bayesian approach for assessing the boundary between desirable and undesirable environmental status – An example from a coastal fish indicator in the Baltic Sea. Ecological Indicators [Internet]. 2021 ;120:106975. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X20309146?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ecological indicator approaches typically compare the prevailing state of an ecosystem component to a reference state reflecting good environmental conditions, i.e. the desirable state. However, defining the reference state is challenging due to a wide range of uncertainties related to natural variability and measurement error in data, as well as ecological understanding. This study propose a novel probabilistic approach combining historical monitoring data and ecological understanding to estimate the uncertainty associated with the boundary value of an ecological indicator between good and poor environmental states. Bayesian inference is used to estimate the epistemic uncertainty about the true state of an indicator variable during an historical reference period. This approach replaces the traditional boundary value with probability distribution, indicating the uncertainty about the boundary between environmental states providing a transparent safety margin associated with the risk of misclassification of the indicator’s state. The approach is demonstrated by applying it to a time-series of an ecological status indicator, ‘Abundance of coastal key fish species’, included in HELCOM’s Baltic Sea regional status assessment. We suggest that acknowledgement of the uncertainty behind the final classification leads to more transparent and better-informed decision-making processes.

From ‘clean and green’ to ‘brown and down’: A synthesis of historical changes to biodiversity and marine ecosystems in the Marlborough Sounds, New Zealand

Urlich SC, Handley SJ. From ‘clean and green’ to ‘brown and down’: A synthesis of historical changes to biodiversity and marine ecosystems in the Marlborough Sounds, New Zealand. Ocean & Coastal Management [Internet]. 2020 ;198:105349. Available from: https://www.sciencedirect.com/science/article/pii/S0964569120302593?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ecosystem-based management (EBM) is a potential antidote to the alleviation of multiple stressors in highly-valued and contested marine environments. An understanding of the magnitude and drivers of past ecosystem changes can inform the development of realistic ecological and social outcomes for different places. These goals should aim to increase the ecological health and resilience of coastal ecosystems and their connected land- and sea-scapes by minimising anthropogenic disturbances. To address knowledge gaps, we present a marine historical synthesis of the Marlborough Sounds in New Zealand's South Island. These rias are strongly coupled to the surrounding land and inland river catchments. We took an integrated approach by examining effects of land use change on coastal ecosystems, along with case studies of the effects of exploitation on foundational marine species. We found that ecosystems have gone through a series of transformations since Māori settlement ca. 700 years ago, with localised extirpations of marine megafauna, overharvesting of exploited species, and disruption to ecological functioning through ongoing clearfelling of terrestrial and marine biogenic communities since European settlement in the 1800s. There has been a decline from great abundance of marine life to relative scarcity, which is currently evident to local people in increased effort and reduced allowable catches of fish and shellfish. Recovery of biodiversity in the short-term within the Marlborough Sounds is uncertain, given ongoing multiple and interacting stressors from unsustainable land-use and over-exploitation of marine life. Lifting baselines are possible but will require significant changes to land and marine management to restore ecological health and enhance resilience in the face of climate change. Increased marine protection, regeneration of biodiverse biogenic habitats, spatial fishing measures to increase predators of sea urchins, stricter regulation of plantation forestry and a replanting prohibition in critical erosion source areas, are all needed within an EBM framework. Large experimental areas are proposed to develop, test and integrate different management techniques, and to facilitate community understanding, participation, and support for the transition to EBM.

Assessing the effectiveness of different sea turtle nest protection strategies against coyotes

Lovemore TEJ, Montero N, Ceriani SA, Fuentes MMPB. Assessing the effectiveness of different sea turtle nest protection strategies against coyotes. Journal of Experimental Marine Biology and Ecology [Internet]. 2020 ;533:151470. Available from: https://www.sciencedirect.com/science/article/pii/S0022098120303051?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Depredation of sea turtle nests, where a nest is either partially or completely predated by a predator, is particularly detrimental to the reproductive output of sea turtles and consequently a concern for sea turtle conservation efforts globally. To minimize depredation of sea turtle nests, several protective strategies have been trialed against different predators. However, although information on their effectiveness exists, information on the effectiveness of strategies aiming to mitigate depredation by coyotes, which is an issue at loggerhead turtle, Caretta caretta, nesting beaches in Florida and globally is inexistent. To inform future management of sea turtle nest depredation by coyotes, this study evaluated the effectiveness of three nest protection strategies (self-releasing metal cage, self-releasing plastic cage, and self-releasing metal screen). Further, to obtain insights into coyote behavior during depredation activities and inform management strategies, we used infrared camera surveillance to monitor sea turtle nests. Self-releasing plastic cages were found to be the most effective strategy at mitigating coyote depredation on loggerhead nests. Our findings provide important information for consideration when developing depredation mitigation strategies in the region and globally.

Spatial heterogeneity of coral reef benthic communities in Kenya

Karisa JFuraha, Obura DObare, Chen CAllen. Spatial heterogeneity of coral reef benthic communities in Kenya Riascos JM. PLOS ONE [Internet]. 2020 ;15(8):e0237397. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237397
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Spatial patterns of coral reef benthic communities vary across a range of broad-scale biogeographical levels to fine-scale local habitat conditions. This study described spatial patterns of coral reef benthic communities spanning across the 536-km coast of Kenya. Thirty-eight reef sites representing different geographical zones within an array of habitats and management levels were assessed by benthic cover, coral genera and coral colony size classes. Three geographical zones were identified along the latitudinal gradient based on their benthic community composition. Hard coral dominated the three zones with highest cover in the south and Porites being the most abundant genus. Almost all 15 benthic variables differed significantly between geographical zones. The interaction of habitat factors and management levels created a localised pattern within each zone. Four habitats were identified based on their similarity in benthic community composition; 1. Deep-Exposed Patch reef in Reserve areas (DEPR), 2. Deep-Exposed Fringing reefs in Unprotected areas (DEFU), 3. Shallow Fringing and Lagoon reefs in Protected and Reserve areas (SFLPR) and 4. Shallow Patch and Channel reefs (SPC). DEPR was found in the north zone only and its benthic community was predominantly crustose coralline algae. DEFU was found in central and south zones mainly dominated by soft corals, AcroporaMontipora, juvenile corals and small colonies of adult corals. SFLPR was dominated by macroalgae and turf algae and was found in north and central zones. SPC was found across all geographical zones with a benthic community dominated by hard corals of mostly large colonies of Porites and Echinopora. The north zone exhibits habitat types that support resistance properties, the south supports recovery processes and central zone acts as an ecological corridor between zones. Identifying habitats with different roles in reef resilience is useful information for marine spatial planning and supports the process of designing effective marine protected areas.

Occurrence and abundance of meso and microplastics in sediment, surface waters, and marine biota from the South Pacific region

Bakir A, Desender M, Wilkinson T, Van Hoytema N, Amos R, Airahui S, Graham J, Maes T. Occurrence and abundance of meso and microplastics in sediment, surface waters, and marine biota from the South Pacific region. Marine Pollution Bulletin [Internet]. 2020 ;160:111572. Available from: https://www.sciencedirect.com/science/article/pii/S0025326X20306901?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Data on the occurrence and abundance of meso and microplastics for the South Pacific are limited and there is urgent need to fill this knowledge gap. The main aim of the study was to apply a rapid screening method, based on the fluorescence tagging of polymers using Nile red, to determine the concentration of meso and microplastics in biota, sediment and surface waters near the capital cities of Vanuatu and Solomon Islands. A spatial investigation was carried out for sediment, biota and water as well as a temporal assessment for sediment for two consecutive years (2017 and 2018). Accumulation zones for microplastics were identified supported by previous hydrodynamic models. Microplastics were detected for all environmental compartments investigated indicating their widespread presence for Vanuatu and Solomons Islands. This method was in alignment with previous recommendations that the Nile red method is a promising approach for the largescale mapping of microplastics in a monitoring context.

Pathological Findings in Cetaceans Sporadically Stranded Along the Chilean Coast

Alvarado-Rybak M, Toro F, Abarca P, Paredes E, Español-Jiménez S, Seguel M. Pathological Findings in Cetaceans Sporadically Stranded Along the Chilean Coast. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00684/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1418755_45_Marine_20200903_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Chile has one of the largest coastlines in the world with at least 50% of the world cetacean species occurring within its jurisdictional waters. However, little is known regarding the health status and main causes of death in cetaceans off continental Chile. In this report, we summarize the major pathological findings and most likely causes of death of 15 cetaceans stranded along the Chilean coast between 2010 and 2019. Drowning, due to fishing gear entanglement, was the most likely cause of death in 3 Burmeister’s porpoises (Phocoena spinipinnis), a Risso’s dolphin (Grampus griseus) and a short-beaked common dolphin (Delphinus delphis). Additionally, the 3 Burmeister’s porpoises had mild to moderate eosinophilic and histiocytic pneumonia with pulmonary vasculitis associated with the nematode Pseudalius inflexus. A fourth Burmeister’s porpoise died of drowning after stranding alive at a sandy beach. Two fin whales (Balaenoptera physalus) died most likely of trauma associated with large vessel collision. A long-finned pilot whale (Globicephala melas) and an Orca (Orcinus orca) stranded most likely due to traumatic intra/interspecific interaction with other odontocete although for the pilot whale, osteoporosis with loss of alveolar bone and all teeth could have played a role. For a Strap-toothed beaked whale (Mesoplodon layardi), Dwarf sperm whale (Kogia sima), Southern right-whale dolphin (Lissodelphis peronii), Peale’s dolphin (Lagenorhynchus australis) and a dusky dolphin (Lagenorhynchus obscurus), the cause of stranding could not be determined. This study shows, despite the small number of examined carcasses that in Chile, human related trauma is an important cause of single cetacean stranding events.

Shelter use interactions of invasive lionfish with commercially and ecologically important native invertebrates on Caribbean coral reefs

Hunt CL, Andradi-Brown DA, Hudson CJ, Bennett-Williams J, Noades F, Curtis-Quick J, Lewis OT, Exton DA. Shelter use interactions of invasive lionfish with commercially and ecologically important native invertebrates on Caribbean coral reefs Claydon JAB. PLOS ONE [Internet]. 2020 ;15(8):e0236200. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236200
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Indo-Pacific lionfish have become invasive throughout the western Atlantic. Their predatory effects have been the focus of much research and are suggested to cause declines in native fish abundance and diversity across the invaded range. However, little is known about their non-consumptive effects, or their effects on invertebrates. Lionfish use shelters on the reef, thus there is potential for competition with other shelter-dwelling organisms. We demonstrate similar habitat associations between invasive lionfish, native spiny lobsters (Panulirus argus) and native long-spined sea urchins (Diadema antillarum), indicating the potential for competition. We then used a laboratory experiment to compare activity and shelter use of each species when alone and when lionfish were paired with each native species. Spiny lobsters increased their activity but did not change their shelter use in the presence of a lionfish, whilst long-spined sea urchins changed neither their activity nor shelter use. However, lionfish reduced their shelter use in the presence of spiny lobsters and long-spined sea urchins. This study highlights the importance not only of testing for the non-consumptive effects of invasive species, but also exploring whether native species exert non-consumptive effects on the invasive.

Testing the efficacy of lionfish traps in the northern Gulf of Mexico

Harris HE, Fogg AQ, Gittings SR, Ahrens RNM, Allen MS, III WFPatters. Testing the efficacy of lionfish traps in the northern Gulf of Mexico Tsikliras AC. PLOS ONE [Internet]. 2020 ;15(8):e0230985. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230985
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Spearfishing is currently the primary approach for removing invasive lionfish (Pterois volitans/miles) to mitigate their impacts on western Atlantic marine ecosystems, but a substantial portion of lionfish spawning biomass is beyond the depth limits of SCUBA divers. Innovative technologies may offer a means to target deepwater populations and allow for the development of a lionfish trap fishery, but the removal efficiency and potential environmental impacts of lionfish traps have not been evaluated. We tested a collapsible, non-containment trap (the ‘Gittings trap’) near artificial reefs in the northern Gulf of Mexico. A total of 327 lionfish and 28 native fish (four were species protected with regulations) recruited (i.e., were observed within the trap footprint at the time of retrieval) to traps during 82 trap sets, catching 144 lionfish and 29 native fish (one more than recruited, indicating detection error). Lionfish recruitment was highest for single (versus paired) traps deployed <15 m from reefs with a 1-day soak time, for which mean lionfish and native fish recruitment per trap were approximately 5 and 0.1, respectively. Lionfish from traps were an average of 19 mm or 62 grams larger than those caught spearfishing. Community impacts from Gittings traps appeared minimal given that recruitment rates were >10X higher for lionfish than native fishes and that traps did not move on the bottom during two major storm events, although further testing will be necessary to test trap movement with surface floats. Additional research should also focus on design and operational modifications to improve Gittings trap deployment success (68% successfully opened on the seabed) and reduce lionfish escapement (56% escaped from traps upon retrieval). While removal efficiency for lionfish demonstrated by traps (12–24%) was far below that of spearfishing, Gittings traps appear suitable for future development and testing on deepwater natural reefs, which constitute >90% of the region’s reef habitat.

Valuing ecosystem services of Sundarbans Mangrove forest: Approach of choice experiment

Iqbal MHafiz. Valuing ecosystem services of Sundarbans Mangrove forest: Approach of choice experiment. Global Ecology and Conservation [Internet]. 2020 ;24:e01273. Available from: https://www.sciencedirect.com/science/article/pii/S2351989420308143?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

This study examines the marginal willingness-to-pay (MWTP) and compensating surplus (CS) in response to the policy change of ecosystem services of Sundarbans based on focus group discussion (FGD) and survey. The choice experiment approach (CE) was conducted in seven villages of Sundarbans of Bangladesh to elicit stated preference data and measure MWTP and CS. Each respondent faced three options in every choice card-two hypothetical alternatives and one status quo scheme. Four ecosystem services-payment for ecosystem services, fish, shrimp larvae, and crab capture from canals and creeks, leaves, grasses and twigs collection, and fruits and honey collection are used to design choice cards. The findings suggest that age, income, education, family composition, and occupational status are the influential factors to choice the relevant attributes of ecosystem services. Respondents would like to pay more Tk. 0.015 in option 1, Tk. 0.086 in option 2 and Tk. 0.329 in option 3 for ecosystem services. With these MWTP, they get more surplus-Tk. 0.551 in option 3. The subsequent surplus will be estimated Tk. 0.105 in option 2 and Tk. 0.078 in option 1. The lower MWTP does not necessarily imply low demand for ecosystem services, as the findings from MWTP illustrate potential demand for ecosystem services of Sundarbans.

Valuing the ecosystem service benefits from kelp forest restoration: A choice experiment from Norway

Hynes S, Chen W, Vondolia K, Armstrong C, O'Connor E. Valuing the ecosystem service benefits from kelp forest restoration: A choice experiment from Norway. Ecological Economics [Internet]. 2021 ;179:106833. Available from: https://www.sciencedirect.com/science/article/pii/S0921800919319573?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Habitat loss and degradation are recognised as the most important causes of species decline and extinction in marine ecosystems. It is also widely recognised that a range of restoration actions are now essential to halt further decline. From a policy perspective, demonstration that restoration activity is in the interest of society is an important goal. In this paper, the welfare impacts of restoring Norwegian kelp forests to areas where they once were dominant but which now lie barren are estimated using the discrete choice modelling approach. The paper also examines if more direct contact with the environmental good under investigation influences respondents' willingness to pay to restore ecosystem features. The results indicate a positive and significant marginal societal willingness to pay for the ecosystem services associated with kelp forest restoration. The enhanced biodiversity levels as a result of the restoration activity are the most highly valued by the Norwegian public although the size of the area restored is more highly valued by respondents who are active marine environment users. It is argued that without incorporating these non-market values into the decision making process marine policy decisions may be made that are not in fact in the best interest of society.

Spatial Ecology of Sub-Adult Green Turtles in Coastal Waters of the Turks and Caicos Islands: Implications for Conservation Management

Doherty PD, Broderick ACameron, Godley BJohn, Hart KA, Phillips Q, Sanghera A, Stringell TB, Walker JT, Richardson PBradley. Spatial Ecology of Sub-Adult Green Turtles in Coastal Waters of the Turks and Caicos Islands: Implications for Conservation Management. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00690/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1418755_45_Marine_20200903_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine turtles are of conservation concern throughout their range, with past population declines largely due to exploitation through both legal and illegal take, and incidental capture in fisheries. Whilst much research effort has been focused on nesting beaches and elaborating migratory corridors, these species spend the vast majority of their life-cycle in foraging grounds, which are, in some species, quite discrete. To understand and manage these populations, empirical data are needed on distribution, space-use, and habitats to best inform design of protective measures. Here we describe space-use, occupancy, and wide-ranging movements derived from conventional flipper tagging and satellite tracking of sub-adult green turtles (Chelonia mydas) within the coastal waters of the Turks and Caicos Islands (TCI; 2011–2017). 623 turtles were fitted with flipper tags, with 69 subsequently recaptured, five of which in international waters. Sixteen individual turtles of between 63 and 81 cm curved carapace length were satellite tracked for a mean 226 days (range: 38–496). Data revealed extended periods of occupancy in the shallow coastal waters within a RAMSAR protected area. Satellite tracking and flipper tagging showed wide-ranging movements, with flipper tag recaptures occurring in waters off Nicaragua (n = 4), and Venezuela (n = 1). Also, four of 16 satellite tracked turtles exhibiting directed movements away (displaced >450 km) from TCI waters traveling through nine geo-political zones within the Caribbean-Atlantic basin, as well as on the High Seas. One turtle traveled to the Central American coast before settling on inshore habitat in Colombia’s waters for 162 days before transmission ceased, indicating ontogenetic dispersal to a distant foraging habitat. These data highlight connectivity throughout the region, displaying key linkages between countries that have previously only been linked by genetic evidence. This study also provides evidence of the importance of the Turks and Caicos Islands marine protected area network and importance of effective management of the sea turtle fishery for regional green turtle populations.

Detections of Whale Vocalizations by Simultaneously Deployed Bottom-Moored and Deep-Water Mobile Autonomous Hydrophones

Fregosi S, Harris DV, Matsumoto H, Mellinger DK, Barlow J, Baumann-Pickering S, Klinck H. Detections of Whale Vocalizations by Simultaneously Deployed Bottom-Moored and Deep-Water Mobile Autonomous Hydrophones. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00721/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1418755_45_Marine_20200903_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Advances in mobile autonomous platforms for oceanographic sensing, including gliders and deep-water profiling floats, have provided new opportunities for passive acoustic monitoring (PAM) of cetaceans. However, there are few direct comparisons of these mobile autonomous systems to more traditional methods, such as stationary bottom-moored recorders. Cross-platform comparisons are necessary to enable interpretation of results across historical and contemporary surveys that use different recorder types, and to identify potential biases introduced by the platform. Understanding tradeoffs across recording platforms informs best practices for future cetacean monitoring efforts. This study directly compares the PAM capabilities of a glider (Seaglider) and a deep-water profiling float (QUEphone) to a stationary seafloor system (High-frequency Acoustic Recording Package, or HARP) deployed simultaneously over a 2 week period in the Catalina Basin, California, United States. Two HARPs were deployed 4 km apart while a glider and deep-water float surveyed within 20 km of the HARPs. Acoustic recordings were analyzed for the presence of multiple cetacean species, including beaked whales, delphinids, and minke whales. Variation in acoustic occurrence at 1-min (beaked whales only), hourly, and daily scales were examined. The number of minutes, hours, and days with beaked whale echolocation clicks were variable across recorders, likely due to differences in the noise floor of each recording system, the spatial distribution of the recorders, and the short detection radius of such a high-frequency, directional signal type. Delphinid whistles and clicks were prevalent across all recorders, and at levels that may have masked beaked whale vocalizations. The number and timing of hours and days with minke whale boing sounds were nearly identical across recorder types, as was expected given the relatively long propagation distance of boings. This comparison provides evidence that gliders and deep-water floats record cetaceans at similar detection rates to traditional stationary recorders at a single point. The spatiotemporal scale over which these single hydrophone systems record sounds is highly dependent on acoustic features of the sound source. Additionally, these mobile platforms provide improved spatial coverage which may be critical for species that produce calls that propagate only over short distances such as beaked whales.

Entanglement rates and haulout abundance trends of Steller (Eumetopias jubatus) and California (Zalophus californianus) sea lions on the north coast of Washington state

Allyn EMarina, Scordino JJoseph. Entanglement rates and haulout abundance trends of Steller (Eumetopias jubatus) and California (Zalophus californianus) sea lions on the north coast of Washington state Wells B. PLOS ONE [Internet]. 2020 ;15(8):e0237178. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237178
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Entanglements affect marine mammal species around the globe, and for some, those impacts are great enough to cause population declines. This study aimed to document rates and causes of entanglement and trends in local haulout abundance for Steller and California sea lions on the north coast of Washington from 2010–2018. We conducted small boat surveys to count sea lions and document entangled individuals. Rates of entanglement and entangling material occurrence were compared with records of stranded individuals on the Washington and Oregon coast and with packing bands recorded during beach debris surveys. The rate of entanglement for California sea lions was 2.13%, almost entirely composed of adult males, with a peak rate during June and July potentially due to some entangled individuals not migrating to their breeding grounds. For Steller sea lions, the rate of entanglement was 0.41%, composed of 77% adults (32.4% male, 63.3% female), 17.1% juveniles, 5.9% unknown age, and no pups. Steller sea lions exhibited a 7.9% ± 3.2 rate of increase in abundance at the study haulouts, which was similar to that seen in California sea lions (7.8% ± 4.2); both increases were greater than the population growth rates observed range-wide despite high rates of entanglement. Most entanglements for both species were classified as packing bands, followed by entanglement scars. Salmon flashers were also prevalent and only occurred from June–September during the local ocean salmon troll fishery. Packing band occurrence in beach debris surveys correlated with packing band entanglements observed on haulouts. However, no packing band entanglements were observed in the stranding record and the rate of stranded animals exhibiting evidence of entanglement was lower than expected, indicating that entanglement survival is higher than previously assumed. Future studies tracking individual entanglement outcomes are needed to develop effective, targeted management strategies.

Micro- and Nanoplastic Exposure Effects in Microalgae: A Meta-Analysis of Standard Growth Inhibition Tests

Reichelt S, Gorokhova E. Micro- and Nanoplastic Exposure Effects in Microalgae: A Meta-Analysis of Standard Growth Inhibition Tests. Frontiers in Environmental Science [Internet]. 2020 ;8. Available from: https://www.frontiersin.org/articles/10.3389/fenvs.2020.00131/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1411754_25_Enviro_20200825_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Background: Ecological impacts of micro- and nanoplastics particles (MNP) are among the most discussed environmental concerns. In algae, MNP are commonly hypothesized to reduce growth, which is a standard ecotoxicological endpoint. However, the reported test outcomes vary, with both growth inhibition and stimulation being observed. Due to this conflict of information, a data synthesis for MNP potential to cause growth inhibition in toxicity testing is needed.

Methods: We performed a meta-analysis study to assess the effect of MNP exposure on algal growth. Twenty studies published between 2010 and 2020 and representing 16 algal species and five polymer materials administered as particles in size range 0.04–3,000 μm were included in this meta-analysis. A random-effect model was used to estimate the effect size in three datasets: (1) Low concentration range (<100 mg/L), (2) High concentration range (≥100 mg/L), and (3) Full range model (0.004–1,100 mg/L), which encompassed all studies using the combination of experimental settings (test species, MNP concentration, polymer material, and particle size) yielding the highest effect size within a study.

Results: The exposure to MNP was not significantly associated with growth inhibition in any of the models tested. However, a high heterogeneity between the studies was found in all three models. Neither MNP concentration nor polymer material contributed significantly to the heterogeneity, whereas polymer density had a significant moderating effect, with a higher risk of growth inhibition at lower densities. We also identified a publication bias, with small studies that reported significant inhibition being overrepresented in our dataset.

Conclusions: The meta-analysis found limited evidence for MNP effect on microalgal growth in the standard algal growth inhibition test. The heterogeneity and varying methodological quality of studies limited the interpretation and the confidence in the findings. For hazard assessment, standardization and controlled exposure are needed as well as more sensitive endpoints that can inform us about the effect mechanisms. Finally, using particle-free controls in such tests cannot account for the presence of inert particulates in the test system, and, hence, does not allow to attribute observed effects to the test polymers.

Using GIS and stakeholder involvement to innovate marine mammal bycatch risk assessment in data-limited fisheries

Verutes GM, Johnson AF, Caillat M, Ponnampalam LS, Peter C, Vu L, Junchompoo C, Lewison RL, Hines EM. Using GIS and stakeholder involvement to innovate marine mammal bycatch risk assessment in data-limited fisheries Duplisea DE. PLOS ONE [Internet]. 2020 ;15(8):e0237835. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237835
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Fisheries bycatch has been identified as the greatest threat to marine mammals worldwide. Characterizing the impacts of bycatch on marine mammals is challenging because it is difficult to both observe and quantify, particularly in small-scale fisheries where data on fishing effort and marine mammal abundance and distribution are often limited. The lack of risk frameworks that can integrate and visualize existing data have hindered the ability to describe and quantify bycatch risk. Here, we describe the design of a new geographic information systems tool built specifically for the analysis of bycatch in small-scale fisheries, called Bycatch Risk Assessment (ByRA). Using marine mammals in Malaysia and Vietnam as a test case, we applied ByRA to assess the risks posed to Irrawaddy dolphins (Orcaella brevirostris) and dugongs (Dugong dugon) by five small-scale fishing gear types (hook and line, nets, longlines, pots and traps, and trawls). ByRA leverages existing data on animal distributions, fisheries effort, and estimates of interaction rates by combining expert knowledge and spatial analyses of existing data to visualize and characterize bycatch risk. By identifying areas of bycatch concern while accounting for uncertainty using graphics, maps and summary tables, we demonstrate the importance of integrating available geospatial data in an accessible format that taps into local knowledge and can be corroborated by and communicated to stakeholders of data-limited fisheries. Our methodological approach aims to meet a critical need of fisheries managers: to identify emergent interaction patterns between fishing gears and marine mammals and support the development of management actions that can lead to sustainable fisheries and mitigate bycatch risk for species of conservation concern.

Using graph theory and social media data to assess cultural ecosystem services in coastal areas: Method development and application

Ruiz-Frau A, Ospina-Alvarez A, Villasante S, Pita P, Maya-Jariego I, de Juan S. Using graph theory and social media data to assess cultural ecosystem services in coastal areas: Method development and application. Ecosystem Services [Internet]. 2020 ;45:101176. Available from: https://www.sciencedirect.com/science/article/pii/S2212041620301182?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The use of social media (SM) data has emerged as a promising tool for the assessment of cultural ecosystem services (CES). Most studies have focused on the use of single SM platforms and on the analysis of photo content to assess the demand for CES. Here, we introduce a novel methodology for the assessment of CES using SM data through the application of graph theory network analyses (GTNA) on hashtags associated to SM posts and compare it to photo content analysis. We applied the proposed methodology on two SM platforms, Instagram and Twitter, on three worldwide known case study areas, namely Great Barrier Reef, Galapagos Islands and Easter Island. Our results indicate that the analysis of hashtags through graph theory offers similar capabilities to photo content analysis in the assessment of CES provision and the identification of CES providers. More importantly, GTNA provides greater capabilities at identifying relational values and eudaimonic aspects associated to nature, elusive aspects for photo content analysis. In addition, GTNA contributes to the reduction of the interpreter’s bias associated to photo content analyses, since GTNA is based on the tags provided by the users themselves. The study also highlights the importance of considering data from different SM platforms, as the type of users and the information offered by these platforms can show different CES attributes. The ease of application and relative short computing processing times involved in the application of GTNA makes it a cost-effective method with the potential of being applied to large geographical scales.

The low impact of fish traps on the seabed makes it an eco-friendly fishing technique

Kopp D, Coupeau Y, Vincent B, Morandeau F, Méhault S, Simon J. The low impact of fish traps on the seabed makes it an eco-friendly fishing technique Coelho R. PLOS ONE [Internet]. 2020 ;15(8):e0237819. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237819
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Besides understanding the effects of fishing on harvested fish stocks, effects on non-target species, habitats and seafloor integrity also need to be considered. Static fishing gears have often been mentioned as a lower impact fishing alternative to towed gears, although studies examining their actual impact on the seafloor are scarce. In this study, we aimed to describe fish trap movements on the seafloor related to soaking time and trap retrieval. Impacts on the seafloor of lightweight rectangular traps and heavier circular traps were compared. We used 3D video cameras to estimate sweeping motion on the seabed and penetration into the sediment during soaking time. The area and distance swept by each type of trap during retrieval was determined by a camera set up facing the sea bottom. The potential rotation of the traps around the mainline was assessed using an Acoustic Doppler Current Profiler. Results showed that no penetration and almost no movements could be detected during soaking time for either lightweight or heavy commercial traps, even for high tidal coefficient (maximum 6 cm). No rotation could be observed when the tide turned. The swept area covered by a trap during retrieval was low (maximum 2.04 m2) compared to towed fishing gear and other static gear.

Pages