Literature Library

Currently indexing 7886 titles

Illicit trade in marine fish catch and its effects on ecosystems and people worldwide

Sumaila UR, Zeller D, Hood L, Palomares MLD, Li Y, Pauly D. Illicit trade in marine fish catch and its effects on ecosystems and people worldwide. Science Advances [Internet]. 2020 ;6(9):eaaz3801. Available from: https://advances.sciencemag.org/content/6/9/eaaz3801
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Illegal, unreported, and unregulated fishing is widespread; it is therefore likely that illicit trade in marine fish catch is also common worldwide. We combine ecological-economic databases to estimate the magnitude of illicit trade in marine fish catch and its impacts on people. Globally, between 8 and 14 million metric tons of unreported catches are potentially traded illicitly yearly, suggesting gross revenues of US$9 to US$17 billion associated with these catches. Estimated loss in annual economic impact due to the diversion of fish from the legitimate trade system is US$26 to US$50 billion, while losses to countries’ tax revenues are between US$2 and US$4 billion. Country-by-country estimates of these losses are provided in the Supplementary Materials. We find substantial likely economic effects of illicit trade in marine fish catch, suggesting that bold policies and actions by both public and private actors are needed to curb this illicit trade.

Sustainable Fishing? Ecological Footprint Analysis of an Artisanal Fishing Organization

Bravo-Olivas ML, Chávez-Dagostino RM. Sustainable Fishing? Ecological Footprint Analysis of an Artisanal Fishing Organization. The Open Environmental Research Journal [Internet]. 2020 ;13(1):1 - 10. Available from: https://benthamopen.com/FULLTEXT/TOECOLJ-13-1
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Background:

Small-scale fisheries are an important economic sector in terms of employment, national food security, enterprise development and foreign exchange earnings. Overfishing is one of the main impacts directly affecting fisheries. However, there are other kinds of global impacts not frequently considered. The ecological footprint indicator is not new but has been mostly overlooked by scholars in the artisanal fishing sector. The aim of this study was to evaluate the corporate ecological footprint of small-scale fisheries through a fishing cooperative at La Cruz de Loreto in Mexico, and determine its eco-efficiency as non-direct global impacts.

Methods:

The Compound Method Based on Financial Accounts (MC3.V.2 for its acronym in Spanish, version 2) was used. It includes the categories of emissions, materials, resources, services and contracts, land use and waste.

Results:

Eco-efficiency, determined by the organization´s ecological footprint, was 0.6 t/ha and its carbon footprint was 0.2 t/tCO2 per year, a low one when compared to others. The consumption category that contributed most to the footprint was indirect emissions and the ecosystem’s fossil energy, which could be explained by the characteristics of the fishing cooperative analyzed.

Conclusion:

The corporate ecological footprint for La Cruz de Loreto fishing cooperative is low when compared to others, but it indicates that they should improve in the category of indirect emission (reduce the consumption of electricity generated by fossil fuel and use of alternative energy) and should invest in the “forest” type of ecosystem to increase carbon sinks and mitigate the impacts.

Current and potential contributions of the Gulf of Lion Fisheries Restricted Area to fisheries sustainability in the NW Mediterranean Sea

Vilas D, Coll M, Corrales X, Steenbeek J, Piroddi C, Macias D, Ligas A, Sartor P, Claudet J. Current and potential contributions of the Gulf of Lion Fisheries Restricted Area to fisheries sustainability in the NW Mediterranean Sea. bioRxiv [Internet]. 2020 . Available from: https://www.biorxiv.org/content/10.1101/2020.02.22.960914v1
Freely available?: 
Yes
Summary available?: 
No
Type: Manuscript

Many commercial species of the world are overexploited resulting in substantial reductions of biomass and ecological changes. Spatial-temporal restrictions of fishing activities are important measures used for the management of marine stocks. However, evidence of whether fishing bans benefit whole ecosystems is still scant. Here, we developed a food-web model approach using the Ecopath with Ecosim (EwE) model representing the Fisheries Restricted Area (FRA) of the Gulf of Lion ecosystem (CoSEGoL model) prior to the establishment of the fisheries restrictions (2006-2008) to characterize the structure and functioning of the ecosystem before and after its establishment. The constructed food-web model was, then, fitted to available time series of data from 2008 to 2016 to verify whether this FRA has contributed to recovery of target demersal species and the demersal community. The fitted model was used to explore alternative future management scenarios to explore feasible management options in order to ensure a full ecosystem recovery under climate change conditions. Both small positive and negative ecosystem changes occurred between prior and after the establishment of the FRA, potentially revealing a lack of protection efficiency and/or enforcement. Scenarios of management options under plausible climate futures revealed possible recovery of targeted species, especially European hake. The study highlighted the importance of considering trophic interactions between predators and prey to identify trade-offs and synergies in fisheries management outcomes and the need to consider both fishing and climate dynamics.

Optimization of hatchery-origin Chinook and hatchery- and natural-origin coho salmon releases in the Salish Sea through ecosystem-based management: adapting hatchery practices to pink salmon abundance

Kendall NW, Nelson BW, Losee JP. Optimization of hatchery-origin Chinook and hatchery- and natural-origin coho salmon releases in the Salish Sea through ecosystem-based management: adapting hatchery practices to pink salmon abundance. Pacific Salmon Commission; 2020. Available from: https://www.psc.org/fund-project/optimization-of-hatchery-chinook-salmon-releases-in-the-salish-sea-through-ecosystem-based-management-adapting-hatchery-practices-to-pink-and-chum-salmon-abundance/
Freely available?: 
Yes
Summary available?: 
No
Type: Report

Producing more hatchery Chinook salmon juveniles has recently been proposed in Washington State with hopes of enhanced ecosystem and fisheries benefits. However, it has recently been shown that even the vast North Pacific Ocean cannot support an infinite number of salmon (Ruggerone and Irvine 2018), and it appears that mortality of salmon in the Salish Sea can also be density dependent (Ruggerone and Goetz 2004). Density-dependent effects between pink salmon in particular (the most numerous species, but also chum salmon) and Chinook salmon have been documented by an increasing number of studies (e.g., Ruggerone and Nielsen 2004; Ruggerone et al. 2003), suggesting that salmon compete for food in the ocean, which can lead to reduced growth, delayed age at maturation, and lower survival rates (Ruggerone and Irvine 2018). Preliminary analyses of the relationships between Chinook salmon hatchery production and numbers surviving to adulthood suggest reduced Chinook survival in years when large numbers of juvenile pink salmon also out-migrate. In some regions, this density-dependent mortality may be so strong that large increases in hatchery releases may limit the number of returning adults.

We propose to evaluate the following questions: what Chinook salmon juvenile release abundance values are associated with greatest marine survival rates? How do survival rates vary with different numbers of juvenile pink salmon out-migrating in the Salish Sea? How do these relationships differ among Chinook salmon stocks from various regions of the Salish Sea?

Linking User-Perception Diversity on Ecosystems Services to the Inception of Coastal Governance Regime Transformation

Herbst DF, Gerhardinger LCavaleri, Hanazaki N. Linking User-Perception Diversity on Ecosystems Services to the Inception of Coastal Governance Regime Transformation. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00083/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In this paper we explore the challenges for transforming a wide and fragmented coastal governance system toward an ecosystem-based regime by translating shared values of nature into radically novel territorial development policies at highly disputed seascapes. We report an official coastal management institutional experiment in South Brazil, where direct ecosystem users (fishers, miners, mariculture, tourism and leisure, and aquatic transport agents and researchers) perception and classification of ecosystem services (ES) was assessed during 19 collaborative sectoral workshops held with 178 participants from six coastal cities surrounding Babitonga Bay estuarine and coastal ecosystems (Santa Catarina state, South Brazil). Participants collectively enlisted the benefits, rights and resources (or services) they obtain from these ecosystems, rendering a total of 285 citations coded to conventional ES scientific typologies (127 ES grouped in 5 types and 31 subtypes). We explore patterns in ES classificatory profiles, highlighting ecosystem user’s salient identities and exploring how they shape political actions in relation to the implementation of an ecosystem-based management regime. Food (provisioning service), tourism/leisure, employment, work and income (cultural services) as well as transportation (e.g. vessels, ports and navigation) (cultural/people’s services) are perceived by all user groups, and hence consist the core set of perceived shared values amongst direct ecosystem users to inform future transformation narratives. Differences in perception of values amongst user groups combined with high levels of power asymmetry and fragmentation in decision-making, are steering the analyzed system toward an unsustainable pathway. The governance regime has been largely favoring subsets of services and unfair distribution of benefits, disregarding a more diverse array of real economic interests, and potential ecological knowledge contributions. Our integrative and deliberative ES valuation approach advances understanding of critical features of the scoping phase of ES assessment initiatives in coastal zones. We provide empirically grounded and theoretically informed suggestions for the promotion of local knowledge integration through combination of methods that supports transformational research agendas. This paper establishes new groundwork to fulfilling alternative visions for the regional social-ecological system transformation to a more socially and ecologically coherent and equitable development trajectory.

Transforming Ocean Conservation: Applying the Genetic Rescue Toolkit

Novak BJ, Fraser D, Maloney TH. Transforming Ocean Conservation: Applying the Genetic Rescue Toolkit. Genes [Internet]. 2020 ;11(2):209. Available from: https://www.mdpi.com/2073-4425/11/2/209
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Although oceans provide critical ecosystem services and support the most abundant populations on earth, the extent of damage impacting oceans and the diversity of strategies to protect them is disconcertingly, and disproportionately, understudied. While conventional modes of conservation have made strides in mitigating impacts of human activities on ocean ecosystems, those strategies alone cannot completely stem the tide of mounting threats. Biotechnology and genomic research should be harnessed and developed within conservation frameworks to foster the persistence of viable ocean ecosystems. This document distills the results of a targeted survey, the Ocean Genomics Horizon Scan, which assessed opportunities to bring novel genetic rescue tools to marine conservation. From this Horizon Scan, we have identified how novel approaches from synthetic biology and genomics can alleviate major marine threats. While ethical frameworks for biotechnological interventions are necessary for effective and responsible practice, here we primarily assessed technological and social factors directly affecting technical development and deployment of biotechnology interventions for marine conservation. Genetic insight can greatly enhance established conservation methods, but the severity of many threats may demand genomic intervention. While intervention is controversial, for many marine areas the cost of inaction is too high to allow controversy to be a barrier to conserving viable ecosystems. Here, we offer a set of recommendations for engagement and program development to deploy genetic rescue safely and responsibly.

Cold-Water Corals and Other Vulnerable Biological Structures on a North Pacific Seamount After Half a Century of Fishing

Preez CDu, Swan KD, Curtis JMR. Cold-Water Corals and Other Vulnerable Biological Structures on a North Pacific Seamount After Half a Century of Fishing. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00017/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Addressing growing threats of overexploitation to the world’s oceans is especially challenging in the High Seas, where limited data and international jurisdiction make it difficult to determine where and when conservation measures are necessary. Of particular concern are vulnerable marine ecosystems (VMEs)—special habitats on the seafloor that are highly sensitive to disturbance and slow to recover. To ensure the long-term conservation and sustainable use of marine resources, regional fisheries management organizations are committed to identifying the locations of VMEs and responding to prevent significant adverse impacts (SAIs). For over 50 years, Cobb Seamount—a shallow underwater volcanic mountain in the Northeast Pacific Ocean—has been commercially fished by multiple nations using various types of gear. Here we have assimilated data from fisheries records and a recent visual survey on the seamount. Our findings show a variety of habitat-forming emergent biological structures widely distributed on Cobb Seamount and generally depth-stratified into high-density assemblages (≥1 m–2). Our spatial analyses show that fishing has also been widely distributed, overlapping the habitat of the biological structures. We found fewer cold-water corals, sponges, and other biological structures in areas with higher recent fishing effort and documented evidence of fishing impacts, such as extensive mats of coral rubble and a high abundance of derelict fishing gear entangled with dead or damaged organisms. Based on the average density of “lost” gear (2,785 ± 1,003 km–2), we can confidently estimate that hundreds of thousands of items of derelict fishing gear are currently entangled with the seafloor of Cobb Seamount and that these pose an ongoing threat to biological structures, the biogenic habitats they create, and the species they support. Such impacts can persist for decades or centuries to come. This study contributes and discusses new information on the condition and distribution of biological structures, VME indicator taxa, physically complex biogenic ecosystems, and human impacts on Cobb Seamount. These data will be necessary to identify the location(s) of potential VMEs and SAIs on this heavily fished seamount in the High Seas.

Oceanographic Drivers of Deep-Sea Coral Species Distribution and Community Assembly on Seamounts, Islands, Atolls, and Reefs Within the Phoenix Islands Protected Area

Auscavitch SR, Deere MC, Keller AG, Rotjan RD, Shank TM, Cordes EE. Oceanographic Drivers of Deep-Sea Coral Species Distribution and Community Assembly on Seamounts, Islands, Atolls, and Reefs Within the Phoenix Islands Protected Area. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00042/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Phoenix Islands Protected Area, in the central Pacific waters of the Republic of Kiribati, is a model for large marine protected area (MPA) development and maintenance, but baseline records of the protected biodiversity in its largest environment, the deep sea (>200 m), have not yet been determined. In general, the equatorial central Pacific lacks biogeographic perspective on deep-sea benthic communities compared to more well-studied regions of the North and South Pacific Ocean. In 2017, explorations by the NOAA ship Okeanos Explorer and R/V Falkor were among the first to document the diversity and distribution of deep-water benthic megafauna on numerous seamounts, islands, shallow coral reef banks, and atolls in the region. Here, we present baseline deep-sea coral species distribution and community assembly patterns within the Scleractinia, Octocorallia, Antipatharia, and Zoantharia with respect to different seafloor features and abiotic environmental variables across bathyal depths (200–2500 m). Remotely operated vehicle (ROV) transects were performed on 17 features throughout the Phoenix Islands and Tokelau Ridge Seamounts resulting in the observation of 12,828 deep-water corals and 167 identifiable morphospecies. Anthozoan assemblages were largely octocoral-dominated consisting of 78% of all observations with seamounts having a greater number of observed morphospecies compared to other feature types. Overlying water masses were observed to have significant effects on community assembly across bathyal depths. Revised species inventories further suggest that the protected area it is an area of biogeographic overlap for Pacific deep-water corals, containing species observed across bathyal provinces in the North Pacific, Southwest Pacific, and Western Pacific. These results underscore significant geographic and environmental complexity associated with deep-sea coral communities that remain in under-characterized in the equatorial central Pacific, but also highlight the additional efforts that need to be brought forth to effectively establish baseline ecological metrics in data deficient bathyal provinces.

Moving Toward an Agenda on Ocean Health and Human Health in Europe

Borja A, White MP, Berdalet E, Bock N, Eatock C, Kristensen P, Leonard A, Lloret J, Pahl S, Parga M, et al. Moving Toward an Agenda on Ocean Health and Human Health in Europe. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00037/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The integrated study of ocean health and human health is an emerging area of increasing global importance. Growing evidences demonstrate that the health of the ocean and the health of humans have always been and will continue to be, inextricably linked. Our actions toward the oceans will significantly influence the future of the whole planet and, in turn, our own health. The current review of these issues arose from a summer school in San Sebastian (Spain), from 5th to 7th June, 2019. An interdisciplinary group of researchers discussed key risks (e.g., microbial pollution, pharmaceuticals, harmful algal blooms, plastic pollution) and benefits (e.g., bathing waters, recreation, tourism) of the seas and global ocean for humanity; and debated the future priorities and potential actions for a joint Oceans and Human Health research and governance programme in Europe. The aim of this review is to contribute to the emerging scientific agenda on ocean health and human health, as well as coordinate efforts with stakeholders, policy makers and the general public. This agenda operates within the larger context of the upcoming United Nations Decade of Ocean Science for Sustainable Development: 2021–2030, which strives to achieve the Sustainable Development Goals (SDG), including healthy (human) lives and well-being (SDG3) and conserving and sustainably using the oceans (SDG14), among others. In addition to summarizing some of the key risks and benefits, therefore, we describe the governance of oceans and health interactions (especially in Europe), and we finish by proposing a list of elements for potential future research priorities on oceans and human health.

UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?

Waltham NJ, Elliott M, Lee SYip, Lovelock C, Duarte CM, Buelow C, Simenstad C, Nagelkerken I, Claassens L, Wen CK-C, et al. UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00071/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

On 1 March 2019, the United Nations (UN) General Assembly (New York) declared 2021–2030 the “UN Decade on Ecosystem Restoration.” This call to action has the purpose of recognizing the need to massively accelerate global restoration of degraded ecosystems, to fight the climate heating crisis, enhance food security, provide clean water and protect biodiversity on the planet. The scale of restoration will be key; for example, the Bonn Challenge has the goal to restore 350 million km2 (almost the size of India) of degraded terrestrial ecosystems by 2030. However, international support for restoration of “blue” coastal ecosystems, which provide an impressive array of benefits to people, has lagged. Only the Global Mangrove Alliance (https://mangrovealliance.org/) comes close to the Bonn Challenge, with the aim of increasing the global area of mangroves by 20% by 2030. However, mangrove scientists have reservations about this target, voicing concerns that it is unrealistic and may prompt inappropriate practices in attempting to reach this target (Lee et al., 2019). The decade of ecosystem restoration declaration also coincides with the UN Decade of Ocean Science for Sustainable Development, which aims to reverse deterioration in ocean health. If executed in a holistic and coordinated manner, signatory nations could stand to deliver on both these UN calls to action.

Marine Bioresource Development – Stakeholder’s Challenges, Implementable Actions, and Business Models

Collins JEva, Vanagt T, Huys I, Vieira H. Marine Bioresource Development – Stakeholder’s Challenges, Implementable Actions, and Business Models. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00062/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Growth of the blue bioeconomy has potential for contributing positively toward economic growth, societal needs and multiple United Nations Sustainable Development Goals. However, organizations currently experience many challenges which limit success in this field. The aim of this paper is to identify trends in challenges linked to target end markets, stages in the value chain and organization types, to suggest potential solutions and link these to potential novel business models. A survey was completed by 58 organizations representing countries across four continents, and interviews were conducted with seven selected European start-ups/SMEs, to gather information regarding existing bottlenecks and to validate their business model. Results indicate that organizations targeting the pharmaceutical and nutraceutical sector experience a majority of challenges related to supply and technology, whereas organizations targeting the industrial biotechnology or agricultural industry experience more issues linked to market. Both bottom-up and top-down approaches could be applied in order to implement suggested actions. Analysis of the business model canvas used by start-ups/SMEs revealed potential for improvement. In particular, it was noted that review of the ‘revenue stream’ segment within the business model, specifically regarding alternatives to governmental funding, could be helpful for the long-term survival of these types of organizations.

A Mitigation Hierarchy Approach for Managing Sea Turtle Captures in Small-Scale Fisheries

Arlidge WNS, Squires D, Alfaro-Shigueto J, Booth H, Mangel JC, Milner-Gulland EJ. A Mitigation Hierarchy Approach for Managing Sea Turtle Captures in Small-Scale Fisheries. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00049/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The mitigation hierarchy has been proposed as an overarching framework for managing fisheries and reducing marine megafauna bycatch, but requires empirical application to show its practical utility. Focusing on a small-scale fishing community in Peru as a case study system, we test how the mitigation hierarchy can support efforts to reduce captures of sea turtles in gillnets and link these actions to broader goals for biodiversity. We evaluate three management scenarios by drawing on ecological risk assessment (ERA) and qualitative management strategy evaluation to assess trade-offs between biological, economic, and social considerations. The turtle species of management focus include leatherback turtle Dermochelys coriacea, green turtle Chelonia mydas, and olive ridley turtle Lepidochelys olivacea. Adopting a mixed-methods iterative approach to data collection, we undertook a literature review to collate secondary data on the fishery and the species of turtles captured. We then collected primary data to fill the knowledge gaps identified, including establishing the spatial extent of the fishery and calculating turtle capture rates for the fishery. We identified and evaluated the potential risk that the fishery poses to each turtle species within Pacific East regional management units using a qualitative ERA. Finally, we evaluated potential management strategies to reduce turtle captures, incorporating stakeholder preference from questionnaire-based surveys and considering preliminary estimates of trends across a range of performance indicators. We illustrate how the proposed framework can integrate existing knowledge on an issue of marine megafauna captures, and incorporate established decision-making processes to help identify data gaps. This supports a holistic assessment of management strategies toward biodiversity goals standardized across fisheries and scales.

First Large-Scale Eastern Mediterranean and Black Sea Stock Assessment Reveals a Dramatic Decline

Demirel N, Zengin M, Ulman A. First Large-Scale Eastern Mediterranean and Black Sea Stock Assessment Reveals a Dramatic Decline. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00103/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Mediterranean Sea is classified as a “data-poor” region in fisheries due to its low number of assessed stocks given its biodiversity and number of exploited species. In this study, the CMSY method was applied to assess the status and exploitation levels of 54 commercial fish and invertebrate stocks belonging to 34 species fished by Turkish fleets in the Eastern Mediterranean (Levantine) and Black Seas, by using catch data and resilience indices. Most of these marine taxa currently lack formal stock assessments. The CMSY method uses a surplus production model (SPM), based on official catch statistics and an abundance index derived from scientific surveys. The SPM estimates maximum sustainable yield (MSY), fishing mortality (F), biomass (B), fishing mortality to achieve sustainable catches (Fmsy), and the biomass to support sustainable catches (Bmsy). Our results show the estimated biomass values for 94% of the stocks were lower than the required amount to support sustainable fisheries (Bmsy). Of the 54 stocks, 85% of them can be deemed as overfished; two stocks were not subject to overfishing (Sardina pilchardus and Trachurus mediterraneus in the Marmara Sea) while only one stock (Sprattus sprattus in the Black Sea) is healthy and capable of producing MSY. Annual values of the stock status indicators, F/Fmsy and B/Bmsy, had opposing trends in all regions, suggesting higher stock biomasses could only be achieved if fishing mortality is drastically reduced. Recovery times and levels were then explored under four varying F/Fmsy scenarios. Under the best-case scenario (i.e., F = 0.5Fmsy), over 60% of the stocks could be rebuilt by 2032. By contrast, if normal fishing practices continue as usual, all stocks will soon be depleted [if not already] (F = 0.95Fmsy), whose recover may be impossible at later dates. The results of this study are supported by previous regional assessments confirming the overexploitation of Turkish fisheries is driving the near-total collapse of these marine wild fisheries. Hence, the need to urgently rebuild Turkey’s marine fisheries ought to be prioritized to ensure their future viability.

Insights on Bloom Forming Jellyfish (Class: Scyphozoa) in the Gulf of Mexico: Environmental Tolerance Ranges and Limits Suggest Differences in Habitat Preference and Resistance to Climate Change Among Congeners

Frolova A, Miglietta MPia. Insights on Bloom Forming Jellyfish (Class: Scyphozoa) in the Gulf of Mexico: Environmental Tolerance Ranges and Limits Suggest Differences in Habitat Preference and Resistance to Climate Change Among Congeners. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00093/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Jellyfish are important components of marine food webs and form problematic blooms that negatively impact human enterprise. Jellyfish of the genus Aurelia (Class Scyphozoa) are common bloom-formers in the Gulf of Mexico (GoM). Aurelia have a multi-modal life cycle where the perennial polyp produces seasonal medusae. Abiotic tolerance ranges and limits strongly influence the distribution of marine species but are unknown for most jellyfish species. Tolerance limits for survival are crucial to understanding present polyp distribution and how distribution may change in climate change scenarios. We sampled and barcoded two Aurelia species from the GoM, namely Aurelia sp. 9 and a possible new species found offshore (Aureliasp. new). Planulae obtained from one medusa of Aurelia sp. new, and five medusae of Aurelia sp. 9 were used to establish laboratory cultures. Polyps of Aurelia coerulea, a species native to Japan but introduced in North America, Australia, and Europe, were obtained from a local aquarium, barcoded, and used to establish laboratory cultures. Using controlled laboratory experiments, we determined the temperature and salinity limits for polyp survival of the two GoM species and A. coerulea. We find that A. sp. 9 and A. coerulea were tolerant of a broad range of temperatures and salinities, but differed in tolerance limits, suggesting potential differences in habitat and resistance to climate change. A. sp. 9 was most tolerant of high temperatures and low salinities, such as those found in the estuaries of the GoM. Summer high temperatures in the coastal GoM exceed the upper thermal tolerance limit of A. sp. new and A. coerulea, suggesting that A. sp. new is an offshore species and that the coastal GoM waters may not be a suitable environment for A. coerulea. Based on the upper thermal limits identified in this study, the 4°C ocean temperature increase projected for the GoM by the next century may negatively impact Aurelia sp. 9 and Aurelia sp. new populations and is expected to deter A. coerulea from invading the GoM. This is the first account of Aurelia sp. new and the first report of temperature and salinity ranges and tolerance limits for Aurelia species.

Governing Risks of Multi-Use: Seaweed Aquaculture at Offshore Wind Farms

van den Burg SWK, Röckmann C, Banach JL, van Hoof L. Governing Risks of Multi-Use: Seaweed Aquaculture at Offshore Wind Farms. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00060/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Spatial claims concerning the rapidly growing European offshore wind sector give rise to various ideas for the multi-use application of wind farms. Seaweed is considered a promising feedstock for food and feed that could be produced at offshore wind farms. Concerns about risks resulting in liability claims and insurance premiums are often seen as show-stoppers to multi-use at offshore wind farms. In this study, key environmental risks of seaweed cultivation at offshore wind farms, identified through literature review, are characterized based on stakeholder consultation. The current approach to risk governance is evaluated to assess how it can handle the uncertain, complex, and/or ambiguous risks of multi-use. It is concluded that current risk governance for multi-use is poorly equipped to deal with the systemic nature of risks. Risk governance should be a joint effort of governments and private regulators. It can improve if it is based on an adaptive framework for risk assessment that can deal with complex, systemic risks. Furthermore, it should be flexible and inclusive, i.e., open to new incoming information and stakeholder input, and taking into account and communicate about the different stakes and values of the various parties involved. The importance of communication and inclusion must be recognized, which promotes participation of concerned stakeholders.

Application of a New Shore-Based Vessel Traffic Monitoring System Within San Francisco Bay

Cope S, Hines E, Bland R, Davis JD, Tougher B, Zetterlind V. Application of a New Shore-Based Vessel Traffic Monitoring System Within San Francisco Bay. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00086/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Vessel traffic management systems can be employed for environmental management where vessel activity may be of concern. One such location is in San Francisco Bay where a variety of vessel types transit a highly developed urban estuary. We analyzed vessel presence and speed across space and time using vessel data from the Marine Monitor, a vessel tracking system that integrates data from the Automatic Identification System and a marine-radar sensor linked to a high-definition camera. In doing so, we provide data that can inform collision risk to cetaceans who show an increased presence in the Bay and evaluation of the value in incorporating data from multiple sources when observing vessel traffic. We found that ferries traveled the greatest distance of any vessel type. Ferries and other commercial vessels (e.g., cargo and tanker ships and tug boats) traveled consistently in distinct paths while recreational traffic (e.g., motorized recreational craft and sailing vessels) was more dispersed. Large shipping vessels often traveled at speeds greater than 10 kn when transiting the study area, and ferries traveled at speeds greater than 30 kn. We found that distance traveled and speed varied by season for tugs, motorized recreational and sailing vessels. Distance traveled varied across day and night for cargo ships, tugs, and ferries while speed varied between day and night only for ferries. Between weekdays and weekends, distance traveled varied for cargo ships, ferries, and sailing vessels, while speed varied for ferries, motorized recreational craft, and sailing vessels. Radar-detected vessel traffic accounted for 33.9% of the total track distance observed, highlighting the need to include data from multiple vessel tracking systems to fully assess and manage vessel traffic in a densely populated urban estuary.

Marine Conservation Begins at Home: How a Local Community and Protection of a Small Bay Sent Waves of Change Around the UK and Beyond

Stewart BD, Howarth LM, Wood H, Whiteside K, Carney W, Crimmins É, O’Leary BC, Hawkins JP, Roberts CM. Marine Conservation Begins at Home: How a Local Community and Protection of a Small Bay Sent Waves of Change Around the UK and Beyond. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00076/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Firth of Clyde, on the west coast of Scotland, was once one of the most productive fishing grounds in Europe. However, successive decades of poor management and overfishing led to a dramatic loss of biodiversity and the collapse of finfish fisheries. In response, concerned local residents on the Isle of Arran, which lies in the middle of the Clyde, formed the Community of Arran Seabed Trust (COAST) in 1995. After 13 years of campaigning, a small (2.67 km2) area in Lamlash Bay became Scotland’s first no-take zone (NTZ) in 2008, and only the second in the UK. Since protection, biodiversity has increased substantially, along with the size, age and density of commercially important species such as the king scallop, Pecten maximus, and the European lobster, Homarus gammarus. Arguably more important, however, is the influence the Lamlash Bay NTZ and COAST have had on UK marine protection in general. Most notably, detailed research has created a case study that clearly demonstrates the benefits of protection in an area where little such evidence is available. This case has been used repeatedly to support efforts for increased protection of UK waters to help rebuild marine ecosystems and enhance their resilience in an uncertain future. In Scotland specifically, lobbying by COAST led to the designation of a much larger marine protected area (MPA, >250 km2) around the south of Arran, one of 30 new MPAs in the country. Evidence from Lamlash Bay has supported development of strong protection for these MPAs, seeing off lobbyist efforts to weaken management. Arran’s conservation success has been recognized internationally and is inspiring greater involvement of local communities around the UK, and further afield, to take the destiny of their coastal waters into their own hands. Successful marine conservation begins at home.

Vulnerability of Demersal Fish Assemblages to Trawling Activities: A Traits-Based Index

de Juan S, Hinz H, Sartor P, Vitale S, Bentes L, Bellido JM, Musumeci C, Massi D, Gancitano V, Demestre M. Vulnerability of Demersal Fish Assemblages to Trawling Activities: A Traits-Based Index. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00044/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Reducing the impact on vulnerable species through changes in fishing practices, such as the spatial or temporal avoidance of certain areas, is key to increase the ecological sustainability of fisheries. However, it is often hampered by the availability of sufficiently detailed data and robust indicators. Existing trawl surveys are a cost-effective data source to assess the vulnerability of fishing areas based on the quantities of vulnerable species caught. We developed a biological traits-based approach to the vulnerability of demersal assemblages using commercial trawl catch data. An expert-based approach identified a set of biological traits that are expected to condition the species’ response to trawling impact and are combined to produce the vulnerability index ranked into four levels (low, moderate, high, and very high vulnerability). The approach was tested in four southern European fishing grounds showing evidence of over-exploitation, through catches being dominated by species of relatively low vulnerability to fishing impacts. The general distribution of species’ biomass amongst vulnerability groups was highly homogenous across case studies, despite local differences in fishing fleet structure, target species and fishing depths. Within all areas the species with moderate vulnerability dominated and, in most instances, species of “very high” vulnerability were not recorded. Nevertheless, differences emerged when comparing the proportions of highly vulnerable species in the catches. Variability in vulnerability level of the catch was also observed at small spatial scales, which was principally explained by differences in habitat type and depth and, secondarily, by fishing effort. In fine mud in the shallower areas there was a higher presence of low vulnerable fauna. Furthermore, vulnerable organisms decreased in their presence in sandier substrates on the continental shelf. The spatial heterogeneity in assemblage vulnerability composition encourages the potential for adoption of this index in the spatial management of fishing grounds aiming at ensuring a sustainable exploitation by mitigating trawl impacts on the most vulnerable components of the demersal assemblages.

The Willingness to Pay for Beach Scenery and its Preservation in Italy

Rodella I, Madau FAlbino, Carboni D. The Willingness to Pay for Beach Scenery and its Preservation in Italy. Sustainability [Internet]. 2020 ;12(4):1604. Available from: https://www.mdpi.com/2071-1050/12/4/1604
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In order to understand the multiple values of landscape, this paper suggests an evaluative methodology that takes into account a quantitative approach, public opinion, and an economic estimation. This study analyzes the coastal scenery of 40 Italian beaches using a fuzzy logic and a Contingent Valuation (CV). Each site was classified into five categories: Class I beaches were littorals with high natural settings; Class II sites were natural and semiurban beaches having low influences by anthropic structures; Classes III, IV, and V had lower evaluations due to poor physical and human condition. A questionnaire survey analyzed beach users’ preferences, judgment, and Willingness to Pay (WTP). Results suggest that landscape judgment is directly correlated to scenery assessment; therefore, beaches of Class I and II were judged beautiful while beaches of Class IV and V had poor judgments. Similarly, the importance given to the landscape was highest in Class I and II than in the others. WTP for the conservation of the selected beaches was about €16 per season. Our findings suggest that people are disposed to pay more for a beach with the top-grade of scenery (Class I and II) and low grade of urbanization. Moreover, WTP would rise for females and for nonresident users with an academic degree, which appreciated the coastal landscape.

Pages