Literature Library

Currently indexing 8090 titles

What Is Gill Health and What Is Its Role in Marine Finfish Aquaculture in the Face of a Changing Climate?

Foyle KL, Hess S, Powell MD, Herbert NA. What Is Gill Health and What Is Its Role in Marine Finfish Aquaculture in the Face of a Changing Climate?. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00400/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

It is hard to find a definition of gill health in the literature although there is a lot of information on changes to gill structure as a result of infectious and non-infectious challenge. How these changes relate to overall fish health is sometimes not clear. Interaction between the gill, the fish, and a range of anticipated changes in the environment will have a currently unknown effect on marine health and aquaculture production. To a degree, fish will likely be able to ameliorate certain changes, such as compensating for slightly elevated carbon dioxide; however, these actions may come at the cost of compromising other functions such as osmoregulation. Compensation will also depend on gill epithelial health and other environmental factors like external nitrogen and ammonia sources which can rise depending on the direction future culture and levels of eutrophication take. Fish can also remodel gill structure in response to salinity, hypoxia, or acidification but it appears that increased temperatures may be associated with increased pathology observable in the gill, and certain fishes may be more susceptible to change. There is a need for more targeted research into climate change-specific gill physiology and a need to recognise gill health as being a key component of food security and not just fish health.

Interaction of the Antarctic Circumpolar Current With Seamounts Fuels Moderate Blooms but Vast Foraging Grounds for Multiple Marine Predators

Sergi S, Baudena A, Cotté C, Ardyna M, Blain S, d’Ovidio F. Interaction of the Antarctic Circumpolar Current With Seamounts Fuels Moderate Blooms but Vast Foraging Grounds for Multiple Marine Predators. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00416/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In the Antarctic Circumpolar Current region of the Southern Ocean, the massive phytoplankton blooms stemming from islands support large trophic chains. Contrary to islands, open ocean seamounts appear to sustain blooms of lesser intensity and, consequently, are expected to play a negligible role in the productivity of this area. Here we revisit this assumption by focusing on a region of the Antarctic Circumpolar Current zone which is massively targeted by marine predators, even if no island fertilizes this area. By combining high resolution bathymetric data, Lagrangian analyses of altimetry-derived velocities and chlorophyll a observations derived from BGC-Argo floats and ocean color images, we reveal that the oligotrophic nature of the study region considered in low chlorophyll a climatological maps hides in reality a much more complex environment. Significant (chlorophyll a in excess of 0.6 mg/m3) phytoplankton blooms spread over thousands of kilometers and have bio-optical signatures similar to the ones stemming from island systems. By adopting a Lagrangian approach, we demonstrate that these moderate blooms (i) originate at specific sites where the Antarctic Circumpolar Current interacts with seamounts, and (ii) coincide with foraging areas of five megafauna species. These findings underline the ecological importance of the open ocean subantarctic waters and advocate for a connected vision of future conservation actions along the Antarctic Circumpolar Current.

Understanding Environmental Changes in Temperate Coastal Seas: Linking Models of Benthic Fauna to Carbon and Nutrient Fluxes

Ehrnsten E, Sun X, Humborg C, Norkko A, Savchuk OP, Slomp CP, Timmermann K, Gustafsson BG. Understanding Environmental Changes in Temperate Coastal Seas: Linking Models of Benthic Fauna to Carbon and Nutrient Fluxes. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00450/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coastal seas are highly productive systems, providing an array of ecosystem services to humankind, such as processing of nutrient effluents from land and climate regulation. However, coastal ecosystems are threatened by human-induced pressures such as climate change and eutrophication. In the coastal zone, the fluxes and transformations of nutrients and carbon sustaining coastal ecosystem functions and services are strongly regulated by benthic biological and chemical processes. Thus, to understand and quantify how coastal ecosystems respond to environmental change, mechanistic modeling of benthic biogeochemical processes is required. Here, we discuss the present model capabilities to quantitatively describe how benthic fauna drives nutrient and carbon processing in the coastal zone. There are a multitude of modeling approaches of different complexity, but a thorough mechanistic description of benthic-pelagic processes is still hampered by a fundamental lack of scientific understanding of the diverse interactions between the physical, chemical and biological processes that drive biogeochemical fluxes in the coastal zone. Especially shallow systems with long water residence times are sensitive to the activities of benthic organisms. Hence, including and improving the description of benthic biomass and metabolism in sediment diagenetic as well as ecosystem models for such systems is essential to increase our understanding of their response to environmental changes and the role of coastal sediments in nutrient and carbon cycling. Major challenges and research priorities are (1) to couple the dynamics of zoobenthic biomass and metabolism to sediment reactive-transport in models, (2) to test and validate model formulations against real-world data to better incorporate the context-dependency of processes in heterogeneous coastal areas in models and (3) to capture the role of stochastic events.

Artificial Reefs in the Northern Gulf of Mexico: Community Ecology Amid the “Ocean Sprawl”

Schulze A, Erdner DL, Grimes CJ, Holstein DM, Miglietta MPia. Artificial Reefs in the Northern Gulf of Mexico: Community Ecology Amid the “Ocean Sprawl”. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00447/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The northern Gulf of Mexico has been an important source for crude oil and natural gas extraction since the 1930s. Thousands of fixed platforms and associated equipment have been installed on the Gulf of Mexico continental shelf, leading to a pervasive ‘ocean sprawl.’ After decommissioning, 100s of these structures have been converted to artificial reefs under the federal ‘Rigs-to-Reefs’ program, in addition to artificial reefs specifically designed to enhance fisheries and/or benefit the recreational diving industry. Apart from a few natural banks, which reach to approximately 55 ft below the surface, artificial reefs provide the only shallow-water hard substrate for benthic organisms in the deeper waters of the northern Gulf of Mexico. This vast expansion in available habitat has almost exclusively occurred over a relatively short span of time (∼50 years). The ecological interactions of artificial and natural reefs in the northern Gulf of Mexico are complex. Artificial reefs in general, and oil and gas structures in particular, have often been invoked as stepping stones for non-native and invasive species (e.g., Tubastrea cup corals, lionfish). The pilings are covered with fouling communities which remain largely unstudied. While the risks of these fouling organisms for invading natural reefs are being broadly discussed, other impacts on the ecological and economic health of the Gulf of Mexico, such as the potential to facilitate jellyfish blooms or increase the incidence of ciguatera fish poisoning, have received less attention. Artificial reefs also provide ecosystem services, particularly as habitat for economically important fish species like red snapper. Here we revisit the potential role of artificial reefs as ‘stepping stones’ for species invasions and for fisheries enhancement. Beyond concerns about ecological effects, some of these topics also raise public health concerns. We point out gaps in current knowledge and propose future research directions.

Blue Carbon Stocks and Cross-Habitat Subsidies

Bulmer RHugh, Stephenson F, Jones HFE, Townsend M, Hillman JR, Schwendenmann L, Lundquist CJ. Blue Carbon Stocks and Cross-Habitat Subsidies. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00380/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Blue carbon ecosystems (including saltmarsh, mangrove, seagrass meadows, and other soft sediment habitats) play a valuable role in aquatic carbon dynamics and contribute significantly to global climate change mitigation. However, these habitats are undergoing rapid and accelerating shifts in extent due to climate change and anthropogenic impacts. Here, we demonstrate that blue carbon stocks vary across habitats and that cross-habitat subsidies of carbon contribute significantly to blue carbon stocks. Using a case study estuary from New Zealand, organic carbon stocks in above ground biomass and sediment to 100 cm varied significantly between habitat types, from saltmarsh (90 t ha–1), to mangrove (46 t ha–1), to seagrass (27 t ha–1) and unvegetated habitats (26 t ha–1). Despite being typically overlooked in blue carbon literature, unvegetated habitats contained the majority of estuarine carbon stocks when adjusted for their large extent within the estuary (occupying 68.4% of the estuarine area and containing 57% of carbon stocks). When carbon stocks were further refined based on δ13C and δ15N mixing model results, coastal vegetation (saltmarsh, mangrove, and seagrass) was found to provide important cross-habitat subsidies of carbon throughout the estuary, including contributing an estimated 41% of organic carbon within unvegetated sediments, and 51% of the total carbon stock throughout the estuary (yet occupying only 31.6% of the estuary). Given the connected nature of blue carbon ecosystems these findings illustrate the importance of considering the contribution and cross-habitat subsidies of both vegetated and unvegetated habitats to blue carbon stocks in estuaries. This provides critical context when assessing the impact of shifts in habitat distributions due to impacts from climate change and anthropogenic stressors.

Global Deep-Sea Biodiversity Research Trends Highlighted by Science Mapping Approach

Costa C, Fanelli E, Marini S, Danovaro R, Aguzzi J. Global Deep-Sea Biodiversity Research Trends Highlighted by Science Mapping Approach. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00384/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The scientific literature available on deep-sea biodiversity is ample and covers a wide array of objectives, geographic areas, and topics. It also explores the links between ecosystem functioning and productivity as well as modeling, management, and exploitation. New statistical analytical tools now allow the comprehensive monitoring of the status of deep-sea research to highlight global research topics and their trends, which deserve further development and economic investments. Here, we used a science mapping approach to provide a global and systematic bibliometric synthesis of these current research topics and their trends to identify the size, growth, trajectory, and geographic distribution of scientific efforts as well as to highlight the emerging topics. A total of 1287 deep-sea biodiversity publications were retrieved from the Scopus database from 1993 to the present. Both established and emerging research topics were identified: (i) biogeochemical, microbial, and molecular analyses; (ii) biodiversity assessments; (iii) ecosystem conservation and management; and, finally, (iv) zoology and taxocoenosis. The temporal change in research activity (which was assessed by subdividing publications into blocks from 1993 to 2010 and 2011 to 2019) demonstrated that the “biogeochemical, microbial, and molecular analyses” cluster was not present from 1993 to 2010 since it was included in the cluster for “biodiversity assessments,” which it eventually diverged from in the following couple of decades. The United States took the dominant role in research, followed by the United Kingdom; Germany and France were also evidenced. China was particularly associated with the United States.

Estimating the Potential Blue Carbon Gains From Tidal Marsh Rehabilitation: A Case Study From South Eastern Australia

Gulliver A, Carnell PE, Trevathan-Tackett SM, Costa MDuarte de, Masqué P, Macreadie PI. Estimating the Potential Blue Carbon Gains From Tidal Marsh Rehabilitation: A Case Study From South Eastern Australia. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00403/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Historically, coastal “blue carbon” ecosystems (tidal marshes, mangrove forests, seagrass meadows) have been impacted and degraded by human intervention, mainly in the form of land acquisition. With increasing recognition of the role of blue carbon ecosystems in climate mitigation, protecting and rehabilitating these ecosystems becomes increasingly more important. This study evaluated the potential carbon gains from rehabilitating a degraded coastal tidal marsh site in south-eastern Australia. Tidal exchange at the study site had been restricted by the construction of earthen barriers for the purpose of reclaiming land for commercial salt production. Analysis of sediment cores (elemental carbon and 210Pb dating) revealed that the site had stopped accumulating carbon since it had been converted to salt ponds 65 years earlier. In contrast, nearby recovered (“control”) tidal marsh areas are still accumulating carbon at relatively high rates (0.54 tons C ha–1year–1). Using elevation and sea level rise (SLR) data, we estimated the potential future distribution of tidal marsh vegetation if the earthen barrier were removed and tidal exchange was restored to the degraded site. We estimated that the sediment-based carbon gains over the next 50 years after restoring this small site (360 ha) would be 9,000 tons C, which could offset the annual emissions of ∼7,000 passenger cars at present time (at 4.6 metric tons pa.) or ∼1,400 Australians. Overall, we recommend that this site is a promising prospect for rehabilitation based on the opportunity for blue carbon additionality, and that the business case for rehabilitation could be bolstered through valuation of other co-benefits, such as nitrogen removal, support to fisheries, sediment stabilization, and enhanced biodiversity.

Floating microplastics in a coastal embayment: A multifaceted issue

Frias JPGL, Lyashevska O, Joyce H, Pagter E, Nash R. Floating microplastics in a coastal embayment: A multifaceted issue. Marine Pollution Bulletin [Internet]. 2020 ;158:111361. Available from: https://www.sciencedirect.com/science/article/pii/S0025326X20304793
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Floating microplastic debris at the ocean's surface represents about 1% of all plastics found in the environment, with the remainder thought to be either deposited along the coast or sinks to the bottom of the ocean. This exploratory research on a coastal embayment in the Northeast Atlantic Ocean assesses floating microplastic densities and the potential influence of wind. A total of 1182 floating microplastic particles were retrieved from a total surface seawater volume of 2039.86 m3. The average microplastic density (0.56 ± 0.33 MP m−3) is based on a sample of 20 manta trawls. This study reports primary microplastics (microbeads) floating in Irish coastal waters for the first-time. Compared to similar bays in Europe, Galway Bay has a similar microplastic density range. Microplastics in surface waters are a multifaceted issue therefore, multiple types of sample collection along with associated environmental variables are recommended for coastal monitoring purposes.

On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations

Buijsman MC, Stephenson GR, Ansong JK, Arbic BK, Green JAMattias, Richman JG, Shriver JF, Vic C, Wallcraft AJ, Zhao Z. On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations. Ocean Modelling [Internet]. 2020 :101656. Available from: https://www.sciencedirect.com/science/article/pii/S146350032030158X
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The effects of horizontal resolution and wave drag damping on the semidiurnal M2 tidal energetics are studied for two realistically-forced global HYbrid Coordinate Ocean Model (HYCOM) simulations with 41 layers and horizontal resolutions of 8 km (1∕12.5∘; H12) and 4 km (1∕25∘; H25). In both simulations, the surface tidal error is minimized by tuning the strength of the linear wave drag, which is a parameterization of the surface-tide energy conversion to the unresolved baroclinic wave modes. In both simulations the M2 surface tide error with TPXO8-atlas, an altimetry constrained model, is 2.6 cm. Compared to H12, the surface tide energy conversion to the resolved vertical modes is increased by 50% in H25. This coincides with an equivalent reduction in the tuned loss of energy from the surface tide to the wave drag. For the configurations studied here, the horizontal and not the vertical resolution is the factor limiting the number of vertical modes that are resolved in most of the global ocean: modes 1–2 in H12 and modes 1–5 in H25. The wave drag also dampens the resolved internal tides. The 40% reduction in wave-drag strength does not result in a proportional increase in the mode-1 energy density in H25. In the higher-resolution simulations, topographic mode-scattering and wave–wave interactions are better resolved. This allows for an energy flux out of mode 1 to the higher modes, mitigating the need for an internal tide damping term. The HYCOM simulations are validated with analytical conversion models and altimetry-inferred sea-surface height, fluxes, and surface tide dissipation. H25 agrees best with these data sets to within ∼10%. To facilitate the comparison of stationary tide signals extracted from time series with different durations, we successfully apply a spatially-varying correction factor.

An evidence-based approach for setting desired state in a complex Great Barrier Reef seagrass ecosystem: A case study from Cleveland Bay

Collier CJ, Carter AB, Rasheed M, McKenzie L, Udy J, Coles R, Brodie J, Waycott M, O’Brien KR, Saunders M, et al. An evidence-based approach for setting desired state in a complex Great Barrier Reef seagrass ecosystem: A case study from Cleveland Bay. Environmental and Sustainability Indicators [Internet]. 2020 ;7:100042. Available from: https://www.sciencedirect.com/science/article/pii/S2665972720300246
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Implementing management actions to achieve environmental outcomes requires defining and quantifying ecological targets, but this is a complex challenge, and there are few examples of how to quantitatively set them in complex dynamic marine ecosystems. Here we develop a methodology to devise ‘desired state’ for tropical seagrasses in Cleveland Bay, northern Australia, in the Great Barrier Reef World Heritage Area. Analysis of diverse species assemblages was used to define seagrass communities as indicators of the region’s ecological value. Multivariate regression trees assigned 8000 observations of species presence/absence and habitat characteristics from 2007 to 2017 into seven community types. Generalized Linear Models were used to assess annual variation in above-ground biomass of each seagrass community. Reference subsets of the data expressing high biomass and spatial extent were identified, and desired state was defined as the mean and 95% confidence intervals. This approach rests on the assumption that seagrass resilience and its ecosystem services are met when the diverse seagrass communities reach desired state. This method required a data set that spanned a range in seagrass conditions, but which may have been compromised by a history of pressures. Our method for defining desired state provides evidence-based targets that can be used within an adaptive management framework that prioritises and implements management actions.

Recycling of European plastic is a pathway for plastic debris in the ocean

Bishop G, Styles D, Lens PNL. Recycling of European plastic is a pathway for plastic debris in the ocean. Environment International [Internet]. 2020 ;142:105893. Available from: https://www.sciencedirect.com/science/article/pii/S0160412020318481
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Polyethylene (PE) is one of the most common types of plastic. Whilst an increasing share of post-consumer plastic waste from Europe is collected for recycling, 46% of separated PE waste is exported outside of the source country (including intra-EU trade). The fate of this exported European plastic is not well known. This study integrated data on PE waste flows in 2017 from UN Comtrade, an open repository providing detailed international trade data, with best available information on waste management in destination countries, to model the fate of PE exported for recycling from Europe (EU-28, Norway and Switzerland) into: recycled high-density PE (HDPE) and low-density PE (LDPE) resins, “landfill”, incineration and ocean debris. Data uncertainty was reflected in three scenarios representing high, low and average recovery efficiency factors in material recovery facilities and reprocessing facilities, and different ocean debris fate factors. The fates of exported PE were then linked back to the individual European countries of export. Our study estimated that 83,187 Mg (tonnes) (range: 32,115–180,558 Mg), or 3% (1–7%) of exported European PE in 2017 ended up in the ocean, indicating an important and hitherto undocumented pathway of plastic debris entering the oceans. The countries with the greatest percentage of exported PE ending up as recycled HDPE or LDPE were Luxembourg and Switzerland (90% recycled for all scenarios), whilst the country with the lowest share of exported PE being recycled was the United Kingdom (59–80%, average 69% recycled). The results showed strong, significant positive relationships between the percentage of PE exported out of Europe and the percentage of exports which potentially end up as ocean debris. Export countries may not be the ultimate countries of origin owing to complex intra-EU trade in PE waste. Although somewhat uncertain, these mass flows provide pertinent new evidence on the efficacy and risks of current plastic waste management practices pertinent to emerging regulations around trade in plastic waste, and to the development of a more circular economy.

The Effects of Aquaculture and Marine Conservation on Cultural Ecosystem Services: An Integrated Hedonic – Eudaemonic Approach

Spanou E, Kenter JO, Graziano M. The Effects of Aquaculture and Marine Conservation on Cultural Ecosystem Services: An Integrated Hedonic – Eudaemonic Approach. Ecological Economics [Internet]. 2020 ;176:106757. Available from: https://www.sciencedirect.com/science/article/pii/S0921800918315829
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Understanding the cultural contributions of ecosystems is essential for recognising how environmental policy impacts on human well-being. We developed an integrated cultural ecosystem services (CES) valuation approach involving non-monetary valuation through a eudaemonic well-being questionnaire and monetary valuation through hedonic pricing. This approach was applied to assess CES values on the west coast of Scotland. The impact of scenic area and marine protected area (MPA) designations on CES values and potential trade-offs with aquaculture, an increasingly important provisioning ecosystem service in the region, were investigated. Results confirmed a eudaemonic well-being value structure of seven factors: engagement and interaction with natureplace identitytherapeutic valuespiritual valuesocial bondsmemory/transformative value, and challenge and skill. Visibility of, but not proximity to aquaculture negatively influenced housing prices. In contrast, proximity to MPAs and visibility of scenic areas increased property values. All eudaemonic well-being value factors were positively and significantly associated with scenic areas and a subset of these with MPAs. The integration of the two methods can provide decision-makers with a more comprehensive picture of CES values, their relation to conservation policies and interactions and trade-offs with other activities and services.

Advancing Through the Pandemic From the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities

Pardo JCF, Ramon D, Stefanelli-Silva G, Elegbede I, Lima LS, Principe SC. Advancing Through the Pandemic From the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00528/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ongoing COVID-19 pandemic has brought about a new social and academic reality to researchers worldwide. The field of marine science, our own topic of interest, has also been impacted in multiple ways, from cancelation of laboratory and field activities to postponement of onboard research. As graduate researchers, we have a time-sensitive academic path, and our current situation may constrain our academic future. At the same time, the pandemic demands revised strategies to deal with the ongoing difficulties and tackle similar future situations. In this perspective, we have gathered information on the challenges, solutions and opportunities for graduate researchers in the field of marine science by (1) discussing the relevant short-, long-term challenges caused by the pandemic, (2) providing feasible immediate and near-future solutions, (3) compiling opportunities (courses, scientific events, academic positions), and (4) creating a shared social media account to make the available information on new opportunities more accessible. With this, we hope to add to the efforts to advance the academic career of marine graduates during this harsh period.

Spatial Planning Principles for Marine Ecosystem Restoration

Lester SE, Dubel AK, Hernán G, McHenry J, Rassweiler A. Spatial Planning Principles for Marine Ecosystem Restoration. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00328/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coastal and marine ecosystems characterized by foundation species, such as seagrass beds, coral reefs, salt marshes, oyster reefs, and mangrove forests, are rich in biodiversity and support a range of ecosystem services including coastal protection, food provisioning, water filtration, carbon sequestration, recreational opportunities, cultural value, among others. These ecosystems have experienced degradation and a net loss of total area in regions around the world due to a host of anthropogenic stressors, resulting in declines in the associated ecosystem services they provide. Because of the extensive degradation in many locations, increasing attention has turned to ecosystem restoration of these marine habitats. Restoration techniques for marine and coastal ecosystems are generally more expensive when compared to terrestrial ecosystems, highlighting the importance of carefully selecting locations that will provide the largest return on investment, not only for the probability and magnitude of restoration success, but also for ecosystem service outcomes. However, site selection and spatial planning for marine ecosystem restoration receive relatively little attention in the scientific literature, suggesting a need to better study how spatial planning tools could be incorporated into restoration practice. To the degree that site selection has been formally evaluated in the literature, the criteria have tended to focus more on environmental conditions beneficial for the restored habitat, and less on ecosystem service outcomes once the habitat is restored, which may vary considerably from site to site, or with more complex landscape dynamics and spatial patterns of connectivity. Here we (1) review recent (2015–2019) scientific peer-reviewed literature for several marine ecosystems (seagrass beds, salt marshes, and mangrove forests) to investigate how commonly site selection or spatial planning principles are applied or investigated in scholarly research about marine ecosystem restoration at different spatial scales, (2) provide a conceptual overview of the rationale for applying spatial planning principles to marine ecosystem restoration, and (3) highlight promising analytical approaches from the marine spatial planning and conservation planning literatures that could help improve restoration outcomes. We argue that strategic site selection and spatial planning for marine ecosystem restoration, particularly applied at larger spatial scales and accounting for ecosystem service outcomes, can help support more effective restoration.

The Potential to Improve the Sustainability of Pelagic Fisheries in the Northeast Atlantic by Incorporating Individual Fish Behavior Into Acoustic Sampling

Wassermann SN, Johnson MP. The Potential to Improve the Sustainability of Pelagic Fisheries in the Northeast Atlantic by Incorporating Individual Fish Behavior Into Acoustic Sampling. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00357/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

With the increased uncertainty introduced through climate change and fishing pressure, having accurate estimates of fish biomass is essential for global ecosystem and economic health. Acoustic surveys are an efficient way to determine population size for pelagic species in the Northeast Atlantic (NEA), but acoustic population estimates still contain uncertainty and are difficult for some species. For example, Atlantic mackerel (Scomber scombrus) is one of the most valuable fisheries in the NEA and is not monitored acoustically, as mackerel lack the swim bladder that provides the strongest acoustic echo (target strength) at common assessment frequencies. For all pelagic species, and especially for mackerel, behavior is a source of variation in acoustic measurements and therefore in population estimates. Behavior is mediated by both extrinsic and intrinsic factors, such as the environment and the life history of the fish. In turn, behavior affects the density of the shoal and the tilt angle of the fish relative to the survey vessel, affecting their target strength, which affects the biomass estimate. Some fish may also undergo an anti-predator response to survey vessels, changing their behavior in response to the survey. Understanding these behaviors and incorporating them into acoustic stock assessment methods can improve the accuracy of population estimates. Individual-based models (IBM) of fish shoals provide a pathway for incorporating behavior into acoustic methods. IBMs have been used extensively to build theoretical models of fish shoals, but few have been successfully tested in lab or field conditions. As computational power and monitoring technology improve, modeling the collective behavior of pelagic fishes will be possible. Novel, interdisciplinary approaches to data collection and analysis will help translate theoretical IBMs to the fisheries science domain. Beyond acoustic stock assessments, this approach can be used to investigate knowledge gaps in the effects of fisheries-induced evolution and the potential for range shifts under climate change. Further work to synthesize existing models and incorporate field data will help determine how environmental, ecological, physiological, and anthropogenic factors, often affecting both behavior and acoustic surveying, are interconnected. Moving from theoretical models to practical applications will be a valuable tool in tackling the uncertainty that accompanies further fisheries exploitation and warming oceans.

The Tropical Seagrass Halophila stipulacea: Reviewing What We Know From Its Native and Invasive Habitats, Alongside Identifying Knowledge Gaps

Winters G, Beer S, Willette DA, Viana IG, Chiquillo KL, Beca-Carretero P, Villamayor B, Azcárate-García T, Shem-Tov R, Mwabvu B, et al. The Tropical Seagrass Halophila stipulacea: Reviewing What We Know From Its Native and Invasive Habitats, Alongside Identifying Knowledge Gaps. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00300/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Halophila stipulacea is a small tropical seagrass, native to the Red Sea, Persian Gulf, and the Indian Ocean. It invaded the Mediterranean Sea 150 years ago as a Lessepsian migrant, but so far has remained in insulated, small populations across this basin. Surprisingly, in 2002 it was reported in the Caribbean Sea, where within less than two decades it spread to most of the Caribbean Island nations and reaching the South American continent. Unlike its invasion of Mediterranean, in the Caribbean H. stipulacea creates large, continuous populations in many areas. Reports from the Caribbean demonstrated the invasiveness of H. stipulacea by showing that it displaces local Caribbean seagrass species. The motivation for this review comes from the necessity to unify the existing knowledge on several aspects of this species in its native and invasive habitats, identify knowledge gaps and develop a critical strategy to understand its invasive capacity and implement an effective monitoring and conservation plan to mitigate its potential spread outside its native ranges. We systematically reviewed 164 studies related to H. stipulacea to create the “Halophila stipulacea database.” This allowed us to evaluate the current biological, ecological, physiological, biochemical, and molecular knowledge of H. stipulacea in its native and invasive ranges. Here we (i) discuss the possible environmental conditions and plant mechanisms involved in its invasiveness, (ii) assess the impact of H. stipulacea on native seagrasses and ecosystem functions in the invaded regions, (iii) predict the ability of this species to invade European and transoceanic coastal waters, (iv) identify knowledge gaps that should be addressed to better understand the biology and ecology of this species both in its native and non-native habitats, which would improve our ability to predict H. stipulacea's potential to expand into new areas in the future. Considering the predicted climate change scenarios and exponential human pressures on coastal areas, we stress the need for coordinated global monitoring and mapping efforts that will record changes in H. stipulacea and its associated communities over time, across its native, invasive and prospective distributional ranges. This will require the involvement of biologists, ecologists, economists, modelers, managers, and local stakeholders.

Multi-Year Viability of a Reef Coral Population Living on Mangrove Roots Suggests an Important Role for Mangroves in the Broader Habitat Mosaic of Corals

Lord KScavo, Lesneski KC, Bengtsson ZA, Kuhn KM, Madin J, Cheung B, Ewa R, Taylor JF, Burmester EM, Morey J, et al. Multi-Year Viability of a Reef Coral Population Living on Mangrove Roots Suggests an Important Role for Mangroves in the Broader Habitat Mosaic of Corals. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00377/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Half of coral species that occur on Caribbean reefs have also been reported living in mangroves. Given the vulnerability of corals living on reefs to environmental change, populations of the same species living in mangroves may prove critical to long-term survival of these coral species and the resilience of nearby reefs. To date, few studies have addressed the health and viability of mangrove coral populations, which is necessary if we are to understand their role in the broader meta-community. Here we present the first longitudinal study of the distribution, survival, growth, and recruitment of a mangrove coral population over multiple years. From 2014 to 2018, we fully censused a population of Porites divaricata along 640 meters of a mangrove-lined channel at Calabash Caye, Belize, and beginning in 2015, we tagged individual colonies for longitudinal monitoring. Year-to-year survivorship averaged 66.6% (±3.9 SE), and of the surviving colonies, on average, 72.7% (±2.5 SE) experienced net growth. The number of colonies, their spatial distribution, and population size-structure were essentially unchanged, except for an unusually high loss of larger colonies from 2016 to 2017, possibly the result of a local disturbance. However, each annual census revealed substantial turnover. For example, from 2016 to 2017, the loss or death of 72 colonies was offset by the addition of 89 recruits. Integral projection models (IPM) for two consecutive one-year intervals implicated recruitment and the persistence of large colonies as having the largest impacts on population growth. This 5-year study suggests that the P. divaricata population in the mangroves is viable, but may be routinely impacted by disturbances that cause the mortality of larger colonies. As many corals occur across a mosaic of habitat types, understanding the population dynamics and life-history variability of corals across habitats, and quantifying genetic exchange between habitats, will be critical to forecasting the fate of individual coral species and to maximizing the efficacy of coral restoration efforts.

Current and Future Remote Sensing of Harmful Algal Blooms in the Chesapeake Bay to Support the Shellfish Industry

Wolny JL, Tomlinson MC, Uz SSchollaert, Egerton TA, McKay JR, Meredith A, Reece KS, Scott GP, Stumpf RP. Current and Future Remote Sensing of Harmful Algal Blooms in the Chesapeake Bay to Support the Shellfish Industry. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00337/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Harmful algal bloom (HAB) species in the Chesapeake Bay can negatively impact fish, shellfish, and human health via the production of toxins and the degradation of water quality. Due to the deleterious effects of HAB species on economically and environmentally important resources, such as oyster reef systems, Bay area resource managers are seeking ways to monitor HABs and water quality at large spatial and fine temporal scales. The use of satellite ocean color imagery has proven to be a beneficial tool for resource management in other locations around the world where high-biomass, nearly monospecific HABs occur. However, remotely monitoring HABs in the Chesapeake Bay is complicated by the presence of multiple, often co-occurring, species and optically complex waters. Here we present a summary of common marine and estuarine HAB species found in the Chesapeake Bay, Alexandrium monilatumKarlodinium veneficumMargalefidinium polykrikoides, and Prorocentrum minimum, that have been detected from space using multispectral data products from the Ocean and Land Colour Imager (OLCI) sensor on the Sentinel-3 satellites and identified based on in situ phytoplankton data and ecological associations. We review how future hyperspectral instruments will improve discrimination of potentially harmful species from other phytoplankton communities and present a framework in which satellite data products could aid Chesapeake Bay resource managers with monitoring water quality and protecting shellfish resources.

The Influence of Eddies on Coral Larval Retention in the Flower Garden Banks

Limer BD, Bloomberg J, Holstein DM. The Influence of Eddies on Coral Larval Retention in the Flower Garden Banks. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00372/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

While coral larval exchange among reef patches is crucial to the persistence of coral metapopulations, larval retention within patches is critical for local population maintenance. In isolated systems such as the Flower Garden Banks (FGB) of the northwest Gulf of Mexico (NW GoM), local retention is thought to play an important role in maintaining high levels of coral cover. Numerous mesoscale cyclonic and anticyclonic features (eddies) are known to spin off from the GoM’s Loop Current, many of which pass over the FGB. We developed a biophysical model of coral larval dispersal (2004–2018) to investigate the extent to which eddies may facilitate coral larval exchange between and within the east and west FGB. Virtual larvae of the broadcast spawning Orbicella faveolata and the brooding Porites astreoides were released and tracked with species-specific reproductive and larval behaviors to investigate differences in retention and connectivity in corals with contrasting life histories. Eddies were detected and tracked using sea surface altimetry and compared with larval trajectories to assess the retentive characteristics of these features. Results suggest consistently high, but species-specific, levels of local retention and cross-bank connectivity in both coral species. High local retention is possible early in the dispersal of P. astreoides, and both species routinely experience retention due to recirculation in eddy features as late as 30 days after planulation or spawning. Eddies passing over the FGB were associated with pulses of between- and within-bank retention, indicating that larvae are capable of dispersing from and returning to coral reefs in the NW GoM. Although opportunities for retention are inherently ephemeral and stochastic due to the nature of Loop Current Eddy (LCE) shedding, eddy propagation should serve as a reliable reseeding mechanism for FGB coral populations. In particular, peaks in late summer eddy propagation correspond with mass coral spawning and may enhance larval retention. These findings support the assertions that healthy FGB reefs may be largely self-sustaining, and that persistent, self-sustaining populations at the FGB may supply downstream reefs with larvae and behave as a remote climate change refugium.

Resource Niches of Co-occurring Invertebrate Species at an Offshore Wind Turbine Indicate a Substantial Degree of Trophic Plasticity

Mavraki N, De Mesel I, Degraer S, Moens T, Vanaverbeke J. Resource Niches of Co-occurring Invertebrate Species at an Offshore Wind Turbine Indicate a Substantial Degree of Trophic Plasticity. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00379/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Offshore wind farms (OWFs) in the North Sea are proliferating, causing alterations in local ecosystems by adding artificial hard substrates into naturally soft-bottom areas. These substrates are densely colonized by fouling organisms, which may compete for the available resources. While the distribution of some species is restricted to specific parts of the turbine, others occur across depth zones and may therefore face different competitive environments. Here we investigate the trophic niches of seven invertebrate species: three sessile (Diadumene cinctaMetridium senile, and Mytilus edulis), one hemi-sessile (Jassa herdmani) and three mobile species (Ophiothrix fragilisNecora puber, and Pisidia longicornis) that occur in multiple depth zones. We hypothesized that these species would be trophic generalists, exhibiting trophic plasticity by selecting different resources in different depth zones, to cope with the different competitive environments in which they occur. We analyzed δ13C and δ15N of these species and their potential resources across depth zones. Our results show that most of these invertebrates are indeed trophic generalists which display substantial trophic plasticity, selecting different resources in different zones. Degree of trophic plasticity was not related to mobility of the species. There are two possible explanations for these dietary changes with depth: either consumers switch diet to avoid competition with other (dominant) species, or they benefit from the consumption of a non-limiting resource. Only Diadumene cincta was a trophic specialist that consumed suspended particulate organic matter (SPOM) independent of its zone of occurrence. Altogether, trophic plasticity appears an important mechanism for the co-existence of invertebrate species along the depth gradient of an offshore wind turbine.

Pages