Literature Library

Currently indexing 8233 titles

Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea

Sörenson E, Farnelid H, Lindehoff E, Legrand C. Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.608244/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Eutrophication coupled to climate change disturbs the balance between competition and coexistence in microbial communities including the partitioning of organic and inorganic nutrients between phytoplankton and bacteria. Competition for inorganic nutrients has been regarded as one of the drivers affecting the productivity of the eutrophied coastal Baltic Sea. Yet, it is unknown at the molecular expression level how resources are competed for, by phytoplankton and bacteria, and what impact this competition has on the community composition. Here we use metatranscriptomics and amplicon sequencing and compare known metabolic pathways of both phytoplankton and bacteria co-occurring during a summer bloom in the archipelago of Åland in the Baltic Sea to examine phytoplankton bacteria resource partitioning. The expression of selected pathways of carbon (C), nitrogen (N), and phosphorus (P) metabolism varied over time, independently, for both phytoplankton and bacteria, indicating partitioning of the available organic and inorganic resources. This occurs regardless of eukaryotic plankton growth phase (exponential or stationary), based on expression data, and microbial community composition. Further, the availability of different nutrient resources affected the functional response by the bacteria, observed as minor compositional changes, at class level, in an otherwise taxonomically stable bacterial community. Resource partitioning and functional flexibility seem necessary in order to maintain phytoplankton-bacteria interactions at stable environmental conditions. More detailed knowledge of which organisms utilize certain nutrient species are important for more accurate projections of the fate of coastal waters.

 

Common Bottlenose Dolphin Protection and Sustainable Boating: Species Distribution Modeling for Effective Coastal Planning

La Manna G, Ronchetti F, Sarà G, Ruiu A, Ceccherelli G. Common Bottlenose Dolphin Protection and Sustainable Boating: Species Distribution Modeling for Effective Coastal Planning. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.542648/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Indicators for preserving marine biodiversity include knowledge of how the spatial distribution and critical habitats of species overlap with human activities and impacts. Such indicators are key tools for marine spatial planning, a process that identifies and resolves conflicts between human uses and the conservation of marine environments. The common bottlenose dolphin in the Mediterranean Sea is considered a vulnerable species by the IUCN Red List and a priority species of the EU Habitat Directive. Here, we estimated spatio-temporal patterns of the species occurrence in the area around one Marine Protected Area (MPA) and two Sites of Community Importance (SCI) of the North western Sardinia, with the aim to predict the species distribution and the main links with the environmental factors and boat traffic. To evaluate whether dolphin groups with calves showed any habitat preference different from groups without calves, separate models for both type of groups were done. The most important contributing variables to the dolphin habitat suitability models were the likelihood of boat presence, habitat type and mean sea surface temperature. Different model outputs were obtained depending on dolphin group composition. The area of high likelihood of dolphin presence ranged between 30 and 60 km2 and was smaller for groups with calves. Further, the area of highest dolphin habitat suitability overlaps with the area of high boat traffic, suggesting that boating in the study site is a potential relevant anthropogenic threat to dolphins. Particularly, boating is concentrated inside and around the MPA/SCIs, indicating the need for stronger restriction measures. We propose updated SCI boundaries for effective protection of common bottlenose dolphins. These areas and the suggestions of regulation are specifically aimed at reducing the impact of boating on dolphins, especially for groups with calves. Synthesis and applications. Management measures should be designed based on the data here provided, and then implemented and enforced to decrease dolphin-boat interactions, especially for mother-calf pairs. The creation of new coastal SCIs should be considered especially where boat traffic overlaps with areas most suitable for dolphins. In these SCIs, boating should be managed to limit disturbance, avoidance or alterations of dolphin vital behavior.

Assessing the Effectiveness of Coastal Marine Protected Area Management: Four Learned Lessons for Science Uptake and Upscaling

Pelletier D. Assessing the Effectiveness of Coastal Marine Protected Area Management: Four Learned Lessons for Science Uptake and Upscaling. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.545930/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

For almost two decades, marine protected areas (MPAs) have been a central instrument of coastal conservation and management policies, but concerns about their abilities to meet conservation goals have grown as the number and sizes of MPAs have dramatically increased. This paper describes how a large (15 years) program of transdisciplinary research was used to successfully measure MPA management effectiveness (ME)—how well an MPA is managed, how well it is protecting values, and how well it is achieving the various goals and objectives for which it was created. This paper addresses the co-production and uptake of monitoring-based evidence for assessing ME in coastal MPAs by synthesizing the experiences of this program conducted with MPA managers. I present the main outcomes of the program, many were novel, and discuss four ingredients (learned lessons) that underpinned the successful uptake of science during and after the research program: (i) early and inclusive co-design of the project with MPA partners and scientists from all disciplines, (ii) co-construction of common references transcending the boundaries of disciplines, and standardized methodologies and tools, (iii) focus on outcomes that are management-oriented and understandable by end-users, and (iv) ensuring that capacity building and dissemination activities occurred during and persisted beyond the program. Standardized monitoring protocols and data management procedures, a user-friendly interface for indicator analysis, and dashboards of indicators related to biodiversity, uses, and governance, were the most valued practical outcomes. Seventy-five students were trained during the projects and most of the monitoring work was conducted with MPA rangers. Such outcomes were made possible by the extended timeline offered by the three successive projects. MPA managers’ and scientists a posteriori perceptions strongly supported the relevance of such collaboration. Local monitoring and assessment meets the needs of MPA managers, and forms the basis for large-scale assessments through upscaling. A long-term synergistic transdisciplinary collaboration between coastal MPA managers and research into social-ecological systems (SESs) would simultaneously (i) address the lack of long-term resources for coastal monitoring and SES-oriented research; (ii) increase science uptake by coastal managers, and (iii) benefit assessments at higher levels or at broader geographic scales.

Arctic Marine Data Collection Using Oceanic Gliders: Providing Ecological Context to Cetacean Vocalizations

Aniceto ASofia, Pedersen G, Primicerio R, Biuw M, Lindstrøm U, Camus L. Arctic Marine Data Collection Using Oceanic Gliders: Providing Ecological Context to Cetacean Vocalizations. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.585754/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

To achieve effective management and understanding of risks associated with increasing anthropogenic pressures in the ocean, it is essential to successfully and efficiently collect data with high spatio–temporal resolution and coverage. Autonomous Underwater Vehicles (AUVs) are an example of technological advances with potential to provide improved information on ocean processes. We demonstrate the capabilities of a low-power AUV buoyancy glider for performing long endurance biological and environmental data acquisition in Northern Norway. We deployed a passive acoustic sensor system onboard a SeagliderTM to investigate presence and distribution of cetaceans while concurrently using additional onboard sensors for recording environmental features (temperature, salinity, pressure, dissolved oxygen, and chlorophyll a). The hydrophone recorded over 108.6 h of acoustic data during the spring months of March and April across the continental shelf break and detected both baleen and odontocete species. We observed a change in cetacean detections throughout the survey period, with humpback whale calls dominating the soundscape in the first weeks of deployment, coinciding with the migration toward their breeding grounds. From mid-April, sperm whales and delphinids were the predominant species, which coincided with increasing chlorophyll a fluorescence values associated with the spring phytoplankton blooms. Finally, we report daily variations in background noise associated with fishing activities and traffic in the nearby East Atlantic shipping route. Our results show that gliders provide excellent platforms for collecting information about ecosystems with minimal disturbance to animals, allowing systematic observations of our ocean biodiversity and ecosystem dynamics in response to natural variations and industrial activities.

Modeling Coral Bleaching Mitigation Potential of Water Vertical Translocation – An Analogue to Geoengineered Artificial Upwelling

Feng EY, Sawall Y, Wall M, Lebrato M, Fu Y. Modeling Coral Bleaching Mitigation Potential of Water Vertical Translocation – An Analogue to Geoengineered Artificial Upwelling. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.556192/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Artificial upwelling (AU) is a novel geoengineering technology that brings seawater from the deep ocean to the surface. Within the context of global warming, AU techniques are proposed to reduce sea surface temperature at times of thermal stress around coral reefs. A computationally fast but coarse 3D Earth System model (3.6° longitude × 1.8° latitude) was used to investigate the environmental impacts of hypothetically implemented AU strategies in the Great Barrier Reef, South China Sea, and Hawaiian regions. While omitting the discussion on sub-grid hydrology, we simulated in our model a water translocation from either 130 or 550 m depth to sea surface at rates of 1 or 50 m3 s–1 as analogs to AU implementation. Under the Representative Concentration Pathway 8.5 emissions scenario from year 2020 on, the model predicted a prevention of coral bleaching until the year 2099 when AU was implemented, except under the least intense AU scenario (water from 130 m depth at 1 m3 s–1). Yet, intense AU implementation (water from 550 m depth at 50 m3 s–1) will likely have adverse effects on coral reefs by overcooling the surface water, altering salinity, decreasing calcium carbonate saturation, and considerably increasing nutrient levels. Our result suggests that if we utilize AU for mitigating coral bleaching during heat stress, AU implementation needs to be carefully designed with respect to AU’s location, depth, intensity and duration so that undesirable environmental effects are minimized. Following a proper installation and management procedure, however, AU has the potential to decelerate destructive bleaching events and buy corals more time to adjust to climate change.

Feeding Habits of Bigeye Tuna (Thunnus obesus) in the Western Indian Ocean Reveal a Size-Related Shift in Its Fine-Scale Piscivorous Diet

Lin C-H, Lin J-S, Chen K-S, Chen M-H, Chen C-Y, Chang C-W. Feeding Habits of Bigeye Tuna (Thunnus obesus) in the Western Indian Ocean Reveal a Size-Related Shift in Its Fine-Scale Piscivorous Diet. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.582571/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

This study analyzed the piscivorous diet of bigeye tuna (Thunnus obesus) through species identification of both fish and otolith remains in stomachs of 183 bigeye tuna collected in the western Indian Ocean. A total of 642 fish remains and 1,021 fish otoliths were examined. Prey items identified in the fish and otolith remains were not completely consistent. Although 12 items out of the 53 identified taxa were found in both remains, 20 items of fish remains were not found in otolith remains, and 21 items were added only from the otoliths. The main fish remains were Alepisauridae, which accounted for 13.9%. Most of the otoliths belonged to Myctophidae (49.5%) and Scopelarchidae (21.4%). Three prey items, namely Valenciennellus tripunctulatusEvermannella sp., and Zenion sp., were recorded for the first time in the diet of bigeye tuna from the region. The otolith remains substantially enhanced the taxonomic resolution of the diet. Bigeye tuna stomach contents were independent of location, depth, and time of catch but varied with tuna size. The proportion of dominant Myctophidae prey items decreased markedly as the tuna size increased, whereas the proportion of Macrouridae increased with size. In addition, larger bigeye tuna were found feeding on larger prey (Electrona risso and Scopelarchus analis), demonstrating that diet changes in both prey composition and size are related to the ontogeny of the fish.

Modeling the Dynamics of Multispecies Fisheries: A Case Study in the Coastal Water of North Yellow Sea, China

Wo J, Zhang C, Pan X, Xu B, Xue Y, Ren Y. Modeling the Dynamics of Multispecies Fisheries: A Case Study in the Coastal Water of North Yellow Sea, China. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.524463/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ecosystem models have been developed for detecting community responses to fishing pressure and have been widely applied to predict the ecological effects of fisheries management. Key challenges of ecosystem modeling lie in the insufficient quantity and quality of data, which is unfortunately common in the marine ecosystems of many developing countries. In this study, we aim to model the dynamics of multispecies fisheries under data-limited circumstances, using a multispecies size-spectrum model (MSSM) implemented in the coastal ecosystem of North Yellow Sea, China. To make most of available data, we incorporated a range of data-limited methods for estimating the life-history parameters and conducted model validation according to empirical data. Additionally, sensitivity analyses were conducted to evaluate the impacts of input parameters on model predictions regarding the uncertainty of data and estimating methods. Our results showed that MSSM could provide reasonable predictions of community size spectra and appropriately reflect the community composition in the studied area, whereas the predictions of fisheries yields were biased for certain species. Errors in recruitment parameters were most influential on the prediction of species abundance, and errors in fishing efforts substantially affected community-level indicators. This study built a framework to integrate parameter estimation, model validation, and sensitivity analyses altogether, which could guide model development in similar mixed and data-limited fisheries and promote the use of size-spectrum model for ecosystem-based fisheries management.

Assessment of 11 Exploited Fish and Invertebrate Populations in the Japan Sea Using the CMSY and BSM Methods

Zhang S, Wang Y, Wang Y, Liang C, Xian W. Assessment of 11 Exploited Fish and Invertebrate Populations in the Japan Sea Using the CMSY and BSM Methods. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.525363/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The catch-maximum sustainable yield (CMSY) method and a closely related Bayesian state-space Schaefer surplus production model (BSM) were combined with published catch data and catch per unit effort (CPUE) time series or spawning stock biomass (SSB) data to evaluate fisheries reference points for exploited resources of the Japan Sea. Eleven fish and invertebrate stocks were assessed; outcomes obtained through this analysis were the carrying capacity, biomass trajectory, maximum sustainable yield, and related parameters of each stock. Results showed that the stock of Arctoscopus japonicus was slightly overfished; the stocks of Cleisthenes pinetorumHippoglossoides dubiusParalichthys olivaceus, and Chionoecetes opilio were overfished; and the stocks of Eopsetta grigorjewiPagrus majorGadus chalcogrammus, and Glossanodon semifasciatus were grossly overfished; Pseudopleuronectes herzensteini was proved to be severely depleted; only Pandalus eous was in good condition. These results are consistent with the few previous studies on the status of fish species around the Japan Sea, where overfishing is becoming increasingly apparent. These assessments provide a basis for guiding the use, management, and rebuilding of fishery resources in the Japan Sea.

Gray Whale (Eschrichtius robustus) Health and Disease: Review and Future Directions

Stimmelmayr R, Gulland FMD. Gray Whale (Eschrichtius robustus) Health and Disease: Review and Future Directions. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/1003389/fmars.2020.588820/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The eastern North Pacific gray whale (Eschrichtius robustus) population is considered “recovered” since the days of commercial whaling, with a population of over 25,000 animals. However, gray whale habitat is changing rapidly due to urbanization of the migratory coastal corridor, increases in shipping, and climate change altering water conditions and prey distribution. Increased single strandings and intermittent large-scale mortality events have occurred over the past 20 years, raising questions about how gray whale health is affected by whale population size (density dependence), climate change, and coastal development. To understand the impacts of these factors on health and the role of health changes in whale population dynamics, increased understanding of the pathogenesis and epidemiology of diseases in gray whales is needed. To date, most information on gray whale health and disease is in single case reports, in sections of larger papers on whale ecology, or in technical memoranda and conference proceedings. Here we review existing data on gray whale health and disease to provide a synthesis of available information and a baseline for future studies, and suggest priorities for future study of gray whale health. The latter include nutritional studies to distinguish annual physiological fasting from starvation leading to mortality, identification of endemic and novel viruses through increased use of molecular techniques, quantifying parasitic infections to explore interactions among prey shifts and parasite infection and body condition, as well as enhancing necropsy efforts to identify stochastic causes of mortality such as vessel strikes, entanglements, and predation. Integration of health and disease studies on individual animals with population monitoring and models of whale/prey dynamics will require interdisciplinary approaches to understand the role of health changes in population dynamics of this coastal whale.

The IUU Nature of FADs: Implications for Tuna Management and Markets

Gomez G, Farquhar S, Bell H, Laschever E, Hall S. The IUU Nature of FADs: Implications for Tuna Management and Markets. Coastal Management [Internet]. 2020 ;48(6):534 - 558. Available from: https://www.tandfonline.com/doi/full/10.1080/08920753.2020.1845585?journalCode=ucmg20
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

World tuna catches reached 5.2 million metric tons in 2018, more than doubling since the early 1990s, primarily due to the introduction of Fish Aggregating Devices (FADs). The widespread use of drifting FADs has increased the economic efficiency of the fleet by making it easier to aggregate and locate tuna schools, but at a high ecological cost, including: significant catches of juvenile tunas; bycatch of endangered, threatened and protected species; and “ghost fishing,” marine pollution, and sensitive habitat destruction by abandoned FADs. Recent analysis indicates that most deployed FADs are eventually lost, stolen, beached, or abandoned, continuing their destructive impacts. This paper examines the legal regime, market forces, and other factors that frame FAD use. We demonstrate that, because deployed FADs are legally considered to be fishing, when they drift into closed areas or otherwise contravene national or international agreements or regulations, they are Illegal, Unreported, and/or Unregulated (IUU); vessels using such FADs are therefore IUU. We suggest that introducing a transparent FAD ownership tracking system and requiring FAD owners to mitigate their impacts could substantially improve the effectiveness of tuna Regional Fisheries Management Organizations (RFMOs) and redirect market incentives to properly support tuna management.

Mislabelling and high mercury content hampers the efforts of market-based seafood initiatives in Peru

Biffi D, López-Mobilia A, Kelez S, Williams DA, Chumchal MM, Weinburgh M. Mislabelling and high mercury content hampers the efforts of market-based seafood initiatives in Peru. Scientific Reports [Internet]. 2020 ;10(1). Available from: https://www.nature.com/articles/s41598-020-77338-x#citeas
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Peru is experiencing a “gastronomic boom” that is increasing the demand for seafood. We investigated two implicit assumptions of two popular sustainable seafood consumer-based initiatives: (1) seafood is labelled correctly, and (2) the recommended species are healthy for consumers. We used DNA barcoding to determine the taxonomic identity of 449 seafood samples from markets and restaurants and analysed the concentration of total mercury (THg) in a sub-sample (271 samples) of these. We found that a third of seafood is mislabelled and that over a quarter of all samples had mercury levels above the upper limit recommended by the US EPA (300 ng/g ww). Additionally, 30% of samples were threatened and protected species. Mislabelling often occurred for economic reasons and the lack of unique common names. Mislabelled samples also had significantly higher mercury concentrations than correctly labelled samples. The “best choice” species compiled from two sustainable seafood guides had less mislabelling, and when identified correctly through DNA barcoding, had on average lower mercury than the other species. Nevertheless, some high mercury species are included in these lists. Mislabelling makes the efforts of seafood campaigns less effective as does the inclusion of threatened species and species high in mercury.

A Blueprint for an Inclusive, Global Deep-Sea Ocean Decade Field Program

Howell KL, Hilário A, A. Allcock L, Bailey DM, Baker M, Clark MR, Colaço A, Copley J, Cordes EE, Danovaro R, et al. A Blueprint for an Inclusive, Global Deep-Sea Ocean Decade Field Program. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.584861/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.

Improving Situational Awareness in the Arctic Ocean

Rainville L, Wilkinson J, Durley MEllen J, Harper S, DiLeo J, Doble MJ, Fleming A, Forcucci D, Graber H, Hargrove JT, et al. Improving Situational Awareness in the Arctic Ocean. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.581139/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

To successfully operate in a harsh environment like the Arctic Ocean, one must be able to understand and predict how that environment will evolve over different spatial and temporal scales. This is particularly challenging given the on-going and significant environmental changes that are occurring in the region. Access to the most recent environmental information provides timely knowledge that enables ship-based operations to proceed efficiently, effectively and safely in this difficult arena. Knowledge of the evolving environmental conditions during a field campaign is critical for effective planning, optimal execution of sampling strategies, and to provide a broader context to data collected at specific times and places. We describe the collaborations and processes that enabled an operational system to be developed to provide a remote field-team, located on USCGC Healy in the Beaufort Sea, with near real-time situational awareness information regarding the weather, sea ice conditions, and oceanographic processes. The developed system included the punctual throughput of near real-time products such as satellite imagery, meteorological forecasts, ice charts, model outputs, and up to date locations of key sea ice and ocean-based assets. Science and operational users, as well as onshore personnel, used this system for real-time practical considerations such as ship navigation, and to time scientific operations to ensure the appropriate sea ice and weather conditions prevailed. By presenting the outputs of the system within the context of case studies our results clearly demonstrate the benefits that improved situational awareness brings to ship-based operations in the Arctic Ocean, both today and in the future.

Climatic and Oceanographic Controls on Coral Bleaching Conditions in the Maldivian Region

De Falco C, Bracco A, Pasquero C. Climatic and Oceanographic Controls on Coral Bleaching Conditions in the Maldivian Region. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.539869/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The frequency of coral bleaching events has been increasing in recent decades due to the temperature rise registered in most regions near the ocean. Their occurrence in the Maldivian Archipelago has been observed in the months following the peak of strong El Niño events. Bleaching has not been uniform, and some reefs have been only marginally impacted. Here, we use satellite observations and a regional ocean model to explore the spatial and temporal variability of sea surface temperatures (SSTs), and quantify the relative magnitude of ENSO-related episodes with respect to the recent warming. In line with other studies, it is confirmed that the long-term trend in SST significantly increases the frequency of stress conditions for the Maldivian corals. It is also found that the interaction between currents and the steep bathymetry is responsible for a local cooling of about 0.2°C in the Archipelago during the warmest season, with respect to the surrounding waters. This cooling largely reduces the frequency of mortality conditions.

Using AIS to Attempt a Quantitative Evaluation of Unobserved Trawling Activity in the Mediterranean Sea

Ferrà C, Tassetti ANora, Armelloni ENicola, Galdelli A, Scarcella G, Fabi G. Using AIS to Attempt a Quantitative Evaluation of Unobserved Trawling Activity in the Mediterranean Sea. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.580612/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In the past decades, the Automatic Identification System (AIS) has been employed in numerous research fields as a valuable tool for, among other things, Maritime Domain Awareness and Maritime Spatial Planning. In contrast, its use in fisheries management is hampered by coverage and transmission gaps. Transmission gaps may be due to technical limitations (e.g., weak signal or interference with other signals) or to deliberate switching off of the system, to conceal fishing activities. In either case such gaps may result in underestimating fishing effort and pressure. This study was undertaken to map and analyze bottom trawler transmission gaps in terms of duration and distance from the harbor with a view to quantifying unobserved fishing and its effects on overall trawling pressure. Here we present the first map of bottom trawler AIS transmission gaps in the Mediterranean Sea and a revised estimate of fishing effort if some gaps are considered as actual fishing.

A Methodology and Tool for Mapping the Risk of Cumulative Effects on Benthic Habitats

Quemmerais-Amice F, Barrere J, La Rivière M, Contin G, Bailly D. A Methodology and Tool for Mapping the Risk of Cumulative Effects on Benthic Habitats. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.569205/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The implementation of the European integrated marine policy poses many scientific challenges. Among them, the knowledge and understanding of interactions between anthropogenic pressures and ecological components is an important issue, particularly to help define Good Environmental Status, environmental targets and monitoring programs of the Marine Strategy Framework Directive (2008, MSFD). Assessment of cumulative effects of different pressures is a particularly complex issue requiring modeling tools and methods, as well as accurate data sets on human activities, anthropogenic pressures and ecological components. The results of these assessments are also uncertain and highly dependent on the calculation methods and assumptions, as well as on the data sets used. Within this context, we developed a technical and methodological approach to map the risk of cumulative effects of different pressures on benthic habitats. These developments were initiated as part of the implementation of the MSFD in France to contribute to the diagnosis of the marine environment. Here we provide a demonstrator to illustrate the feasibility for mapping the risk of cumulative effects of different pressures on benthic habitats, as well as the confidence index and the variability associated with this analysis. The method is based on a spatial analysis using a mapping of benthic habitats and their sensitivity to pressures, as well as the distribution and intensity of human activities and associated pressures. We collected and prepared relatively accurate and consistent data sets to describe human activities and benthic habitats. Data sets are embedded into a grid that facilitates the management and analysis of the data and exploitation of the results. The demonstrator consists of a relational database using the Spatial Query Language (SQL) language as well as data analysis scripts using the R language. The first demonstrator operations validated the main methodological and technical choices and helped to identify future developments needed to facilitate the appropriation and integration of these approaches in the implementation of public policies for the management of the marine environment.

A Synthesis of Marine Monitoring Methods With the Potential to Enhance the Status Assessment of the Baltic Sea

Mack L, Attila J, Aylagas E, Beermann A, Borja A, Hering D, Kahlert M, Leese F, Lenz R, Lehtiniemi M, et al. A Synthesis of Marine Monitoring Methods With the Potential to Enhance the Status Assessment of the Baltic Sea. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.552047/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

A multitude of anthropogenic pressures deteriorate the Baltic Sea, resulting in the need to protect and restore its marine ecosystem. For an efficient conservation, comprehensive monitoring and assessment of all ecosystem elements is of fundamental importance. The Baltic Marine Environment Protection Commission HELCOM coordinates conservation measures regulated by several European directives. However, this holistic assessment is hindered by gaps within the current monitoring schemes. Here, twenty-two novel methods with the potential to fill some of these gaps and improve the monitoring of the Baltic marine environment are examined. We asked key stakeholders to point out methods likely to improve current Baltic Sea monitoring. We then described these methods in a comparable way and evaluated them based on their costs and applicability potential (i.e., possibility to make them operational). Twelve methods require low to very low costs, while five require moderate and two high costs. Seventeen methods were rated with a high to very high applicability, whereas four methods had moderate and one low applicability for Baltic Sea monitoring. Methods with both low costs and a high applicability include the Manta Trawl, Rocket Sediment Corer, Argo Float, Artificial Substrates, Citizen Observation, Earth Observation, the HydroFIA®pH system, DNA Metabarcoding and Stable Isotope Analysis.

Deep-Sea Coral and Sponge Taxa Increase Demersal Fish Diversity and the Probability of Fish Presence

Henderson MJ, Huff DD, Yoklavich MM. Deep-Sea Coral and Sponge Taxa Increase Demersal Fish Diversity and the Probability of Fish Presence. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.593844/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Fishes are known to use deep-sea coral and sponge (DSCS) species as habitat, but it is uncertain whether this relationship is facultative (circumstantial and not restricted to a particular function) or obligate (necessary to sustain fish populations). To explore whether DSCS provide essential habitats for demersal fishes, we analyzed 10 years of submersible survey video transect data, documenting the locations and abundance of DSCS and demersal fishes in the Southern California Bight (SCB). We first classified the different habitats in which fishes and DSCS taxa occurred using cluster analysis, which revealed four distinct DSCS assemblages based on depth and substratum. We then used logistic regression and gradient forest analysis to identify the ecological correlates most associated with the presence of rockfish taxa (Sebastes spp.) and biodiversity. After accounting for spatial autocorrelation, the factors most related to the presence of rockfishes were depth, coral height, and the abundance of a few key DSCS taxa. Of particular interest, we found that young-of-the-year rockfishes were more likely to be present in locations with taller coral and increased densities of Plumarella longispinaLophelia pertusa, and two sponge taxa. This suggests these DSCS taxa may serve as important rearing habitat for rockfishes. Similarly, the gradient forest analysis found the most important ecological correlates for fish biodiversity were depth, coral cover, coral height, and a subset of DSCS taxa. Of the 10 top-ranked DSCS taxa in the gradient forest (out of 39 potential DSCS taxa), 6 also were associated with increased probability of fish presence in the logistic regression. The weight of evidence from these multiple analytical methods suggests that this subset of DSCS taxa are important fish habitats. In this paper we describe methods to characterize demersal communities and highlight which DSCS taxa provide habitat to demersal fishes, which is valuable information to fisheries agencies tasked to manage these fishes and their essential habitats.

High Coral Bycatch in Bottom-Set Gillnet Coastal Fisheries Reveals Rich Coral Habitats in Southern Portugal

Dias V, Oliveira F, Boavida J, Serrão EA, Gonçalves JMS, Coelho MAG. High Coral Bycatch in Bottom-Set Gillnet Coastal Fisheries Reveals Rich Coral Habitats in Southern Portugal. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.603438/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Bottom-contact fisheries are unquestionably one of the main threats to the ecological integrity and functioning of deep-sea and circalittoral ecosystems, notably cold-water corals (CWC) and coral gardens. Lessons from the destructive impact of bottom trawling highlight the urgent need to understand how fisheries affect these vulnerable marine ecosystems. At the same time, the impact of other fishing gear and small-scale fisheries remains sparsely known despite anecdotal evidence suggesting their impact may be significant. This study aims to provide baseline information on coral bycatch by bottom-set gillnets used by artisanal fisheries in Sagres (Algarve, southwestern Portugal), thereby contributing to understand the impact of the activity but also the diversity and abundance of corals in this region. Coral bycatch frequency and species composition were quantified over two fishing seasons (summer-autumn and spring) for 42 days. The relationship with fishing effort was characterized according to métiers (n = 6). The results showed that 85% of the gillnet deployments caught corals. The maximum number of coral specimens per net was observed in a deployment targeting Lophius budegassa (n = 144). In total, 4,326 coral fragments and colonies of 22 different species were captured (fishing depth range of 57–510 m, mean 139 ± 8 m). The most affected species were Eunicella verrucosa (32%), Paramuricea grayi (29%), Dendrophyllia cornigera (12%), and Dendrophyllia ramea (6%). The variables found to significantly influence the amount of corals caught were the target species, net length, depth, and mesh size. The 22 species of corals caught as bycatch belong to Orders Alcyonacea (80%), Scleractinia (18%), Zoantharia (1%), and Antipatharia (1%), corresponding to around 13% of the coral species known for the Portuguese mainland coast. These results show that the impact of artisanal fisheries on circalittoral coral gardens and CWC is potentially greater than previously appreciated, which underscores the need for new conservation measures and alternative fishing practices. Measures such as closure of fishing areas, frequent monitoring onboard of fishing vessels, or the development of encounter protocols in national waters are a good course of action. This study highlights the rich coral gardens of Sagres and how artisanal fisheries can pose significant threat to corals habitats in certain areas.

Phytoplankton Diversity Effect on Ecosystem Functioning in a Coastal Upwelling System

Otero J, Álvarez-Salgado XAntón, Bode A. Phytoplankton Diversity Effect on Ecosystem Functioning in a Coastal Upwelling System. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.592255/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Species composition plays a key role in ecosystem functioning. Theoretical, experimental and field studies show positive effects of biodiversity on ecosystem processes. However, this link can differ between taxonomic and functional diversity components and also across trophic levels. These relationships have been hardly studied in planktonic communities of coastal upwelling systems. Using a 28-year time series of phytoplankton and zooplankton assemblages, we examined the effects of phytoplankton diversity on resource use efficiency (RUE, ratio of biomass to limiting resource) at the two trophic levels in the Galician upwelling system (NW Iberian peninsula). By fitting generalized least square models, we show that phytoplankton diversity was the best predictor for RUE across planktonic trophic levels. This link varied depending on the biodiversity component considered: while the effect of phytoplankton richness on RUE was positive for phytoplankton RUE and negative for zooplankton RUE, phytoplankton evenness effect was negative for phytoplankton RUE and positive for zooplankton RUE. Overall, taxonomic diversity had higher explanatory power than functional diversity, and variability in phytoplankton and zooplankton RUE decreased with increasing phytoplankton taxonomic diversity. Phytoplankton used resources more efficiently in warmer waters and at greater upwelling intensity, although these effects were not as strong as those for biodiversity. These results suggest that phytoplankton species numbers in highly dynamic upwelling systems are important for maintaining the planktonic biomass production leading us to hypothesize the relevance of complementarity effects. However, we further postulate that a selection effect may operate also because assemblages with low evenness were dominated by diatoms with specific functional traits increasing their ability to exploit resources more efficiently.

Pages