Literature Library

Currently indexing 10429 titles

Vulnerable sandstone reefs: Biodiversity and habitat at risk

Soeth M, Metri R, Simioni BIvan, Loose R, Coqueiro GSuzano, Spach HLouis, Daros FAlexandre, Adelir-Alves J. Vulnerable sandstone reefs: Biodiversity and habitat at risk. Marine Pollution Bulletin [Internet]. In Press :110680. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0025326X19308367
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Sandstone reefs may be considered a unique geomorphologic feature within the subtropical Southwestern Atlantic Ocean region; however, biodiversity on these reefs has received little to no attention. Herein, we recorded the fish assemblage and benthic cover of sandstone reefs between 23 and 29 m depth in Southern Brazil and evidenced potential threats to habitat health. Video analysis and underwater censuses recorded 30 fish species. The unexpected high biomass of Epinephelus marginatus indicated that sandstone reefs may contain suitable habitats for the recovery of this endangered species. A rich benthic coverage including bryozoans, algae, hydrozoans, sponges, and octocorals increased local habitat structural complexity. However, a wide diversity of tangled fishing gear and broken sandstone slabs suggested that a valuable feature from Southern Brazil seascape is being lost by cumulative fishing impacts. An extensive mapping of sandstone reefs is urgently needed for better delineation of marine protected areas network in Southeast and Southern Brazil.

The game mechanism of stakeholders in comprehensive marine environmental governance

Jiang D, Chen Z, McNeil L, Dai G. The game mechanism of stakeholders in comprehensive marine environmental governance. Marine Policy [Internet]. In Press :103728. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X18309485
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

In the process of marine resource development and marine environmental protection, the government supervises the production behavior of enterprises; enterprises accept government supervision; and non-profit organizations supervise the process. On this basis, a conceptual model of the relationship between government, enterprises, and non-profit organizations is established, and the internal mechanism governing their interactions is analyzed. Using game theory, a simulation model of government, enterprises, and non-profit organizations is constructed, and a Nash equilibrium solution and strategy selection analysis are carried out. The correlation between the game participants and strategy selection is simulated and analyzed with MATLAB 7 software. Lastly, relevant countermeasures and suggestions are put forward to engender effective supervision by government departments, continuous environmental development and effective environmental protection of enterprises, and effective supervision by non-profit organizations. Studying the regulatory strategies of the government, enterprises, and non-profit organizations can provide a foundation for marine resource development and marine environmental protection policy in accordance with the current situation.

Integrating a spatial model and decision theory towards optimal boating density and carrying capacity in a recreational fishery

Palomo LE, Hernández-Flores A. Integrating a spatial model and decision theory towards optimal boating density and carrying capacity in a recreational fishery. Marine Policy [Internet]. In Press :103740. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X18305967
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

The sustainable management of flats fishing requires establishing limits on the number of boats as its demand continues to grow. This study integrated different techniques to determine the carrying capacity in a recreational fishery: optimum boating density, visual fish census, geographic information system, fishing guides interviews and decision theory. The optimum boating density was based on the effective fishing area (EFA) and on the optimum density. The EFA represented 36% of the bay and was calculated from 53 fishing trips tracked with GPS data loggers. The data were analyzed in a geographic information system that incorporated the effect of the winds on the fish behavior. The maximum number of boats was calculated under four scenarios: northern winds, eastern winds, south-eastern winds and calm winds. The optimum density (average = 1.2 Km2SD = 0.5) was obtained from anglers' statements. The decision theory results showed that the maximum number of boats under wind variability could be up to 89 boats in the fishery.

The dynamic response of sea ice to warming in the Canadian Arctic Archipelago

Howell SEL, Brady M. The dynamic response of sea ice to warming in the Canadian Arctic Archipelago. Geophysical Research Letters [Internet]. 2019 . Available from: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019GL085116
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

Ice arches in the Canadian Arctic Archipelago (CAA) block the inflow of Arctic Ocean ice for the majority of the year. A 22‐year record (1997‐2018) of Arctic Ocean‐CAA ice exchange was used to investigate the effect of warming on CAA sea ice dynamics. Larger ice area flux values were associated with longer flow duration and faster ice speed facilitated by increased open water leeway from the CAA's transition to a younger and thinner ice regime, that together have contributed to a significant ice area flux increase (103 km2/year) from Arctic Ocean into the northern CAA from 1997‐2018. Remarkably, the 2016 Arctic Ocean ice area flux into the CAA (161x103 km2) was 7 times greater than the 1997‐2018 average (23x103 km2) and almost double the 2007 ice area flux into Nares Strait (87x103 km2). Continued warming may result in the CAA becoming a larger outlet for Arctic Ocean ice area loss.

Managing the Effects of Noise From Ship Traffic, Seismic Surveying and Construction on Marine Mammals in Antarctica

Erbe C, Dähne M, Gordon J, Herata H, Houser DS, Koschinski S, Leaper R, McCauley R, Miller B, Müller M, et al. Managing the Effects of Noise From Ship Traffic, Seismic Surveying and Construction on Marine Mammals in Antarctica. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00647/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1153715_45_Marine_20191114_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Protocol on Environmental Protection of the Antarctic Treaty stipulates that the protection of the Antarctic environment and associated ecosystems be fundamentally considered in the planning and conducting of all activities in the Antarctic Treaty area. One of the key pollutants created by human activities in the Antarctic is noise, which is primarily caused by ship traffic (from tourism, fisheries, and research), but also by geophysical research (e.g., seismic surveys) and by research station support activities (including construction). Arguably, amongst the species most vulnerable to noise are marine mammals since they specialize in using sound for communication, navigation and foraging, and therefore have evolved the highest auditory sensitivity among marine organisms. Reported effects of noise on marine mammals in lower-latitude oceans include stress, behavioral changes such as avoidance, auditory masking, hearing threshold shifts, and—in extreme cases—death. Eight mysticete species, 10 odontocete species, and six pinniped species occur south of 60°S (i.e., in the Southern or Antarctic Ocean). For many of these, the Southern Ocean is a key area for foraging and reproduction. Yet, little is known about how these species are affected by noise. We review the current prevalence of anthropogenic noise and the distribution of marine mammals in the Southern Ocean, and the current research gaps that prevent us from accurately assessing noise impacts on Antarctic marine mammals. A questionnaire given to 29 international experts on marine mammals revealed a variety of research needs. Those that received the highest rankings were (1) improved data on abundance and distribution of Antarctic marine mammals, (2) hearing data for Antarctic marine mammals, in particular a mysticete audiogram, and (3) an assessment of the effectiveness of various noise mitigation options. The management need with the highest score was a refinement of noise exposure criteria. Environmental evaluations are a requirement before conducting activities in the Antarctic. Because of a lack of scientific data on impacts, requirements and noise thresholds often vary between countries that conduct these evaluations, leading to different standards across countries. Addressing the identified research needs will help to implement informed and reasonable thresholds for noise production in the Antarctic and help to protect the Antarctic environment.

The Fate of Marine Litter in Semi-Enclosed Seas: A Case Study of the Black Sea

Stanev EV, Ricker M. The Fate of Marine Litter in Semi-Enclosed Seas: A Case Study of the Black Sea. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00660/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1153715_45_Marine_20191114_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The accumulation patterns of floating marine litter (FML) in the Black Sea and the stranding locations on coasts are studied by performing dedicated Lagrangian simulations using freely available ocean current and Stokes drift data from operational models. The low FML concentrations in the eastern and northern areas and the high concentrations along the western and southern coasts are due to the dominant northerlies and resulting Ekman and Stokes drift. No pronounced FML accumulation zones resembling the Great Pacific Garbage Patch are observed at time scales from months to a year. The ratio of circulation intensity (measured by the sea level slope) to the rate of the temporal variability of sea level determines whether FML will compact. This ratio is low in the Black Sea, which is prohibitive for FML accumulation. It is demonstrated that the strong temporal variability of the velocity field (ageostrophic motion) acts as a mixing mechanism that opposes another ageostrophic constituent of the velocity field (spatial variability in sea level slope, or frontogenesis), the latter promoting the accumulation of particles. The conclusion is that not all ageostrophic ocean processes lead to clustering. The short characteristic stranding time of ∼20 days in this small and almost enclosed basin explains the large variability in the total amount of FML and the low FML concentration in the open ocean. The predominant stranding areas are determined by the cyclonic general circulation. The simulated distribution of stranded objects is supported by available coastal and near-coastal observations. It is shown that the areas that were the most at risk extend from the Kerch Strait to the western coast.

Progress on Implementing Ecosystem-Based Fisheries Management in the United States Through the Use of Ecosystem Models and Analysis

Townsend H, Harvey CJ, deReynier Y, Davis D, Zador SG, Gaichas S, Weijerman M, Hazen EL, Kaplan IC. Progress on Implementing Ecosystem-Based Fisheries Management in the United States Through the Use of Ecosystem Models and Analysis. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00641/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1153715_45_Marine_20191114_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Worldwide fisheries management has been undergoing a paradigm shift from a single-species approach to ecosystem approaches. In the United States, NOAA has adopted a policy statement and Road Map to guide the development and implementation of ecosystem-based fisheries management (EBFM). NOAA’s EBFM policy supports addressing the ecosystem interconnections to help maintain resilient and productive ecosystems, even as they respond to climate, habitat, ecological, and social and economic changes. Managing natural marine resources while taking into account their interactions with their environment and our human interactions with our resources and environment requires the support of ecosystem science, modeling, and analysis. Implementing EBFM will require using existing mandates and approaches that fit regional management structures and cultures. The primary mandate for managing marine fisheries in the United States is the Magnuson-Stevens Fishery Conservation and Management Act. Many tenets of the Act align well with the EBFM policy, however, incorporating ecosystem analysis and models into fisheries management processes has faced procedural challenges in many jurisdictions. In this paper, we review example cases where scientists have had success in using ecosystem analysis and modeling to inform management priorities, and identify practices that help bring new ecosystem science information into existing policy processes. A key to these successes is regular communication and collaborative discourse among modelers, stakeholders, and resource managers to tailor models and ensure they addressed the management needs as directly as possible.

Sustainability Status of Data-Limited Fisheries: Global Challenges for Snapper and Grouper

Amorim P, Sousa P, Jardim E, Menezes GM. Sustainability Status of Data-Limited Fisheries: Global Challenges for Snapper and Grouper. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00654/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Snapper and grouper are important fisheries resources, with high commercial value and an important role in the livelihoods and food security of many local communities worldwide. However, the status of many snapper and grouper fisheries is unknown, particularly in the cases of small-scale fisheries in developing countries. The main goals of this work are to provide an overview of the current status and trends of these resources and to find alternative sources of information that could be used to determine the status of snapper and grouper fisheries, as well as other data-limited fisheries. Several complementary approaches were explored, including determination of the status of snapper and grouper fisheries based on FAO assessment criteria, analysis of landings time-series trends, and investigation of whether other variables could be used as proxies for fishery status. About half of these fisheries were classified as overexploited, 30% as non-fully exploited and 19% as fully exploited. The FAO landings data indicated that the number of overexploited fisheries has been increasing over the years and that the majority of these fisheries are in transition between the fully exploited and overexploited statuses. The Human Development Index emerged as a potential proxy for the status of the biomass. The multinomial modeling approach explained about 44% of the variability observed in the biomass stock status classification data and indicated a high level of correspondence between original and estimated status, which makes this approach very attractive for application to other data-limited fisheries.

Predicting Fishing Footprint of Trawlers From Environmental and Fleet Data: An Application of Artificial Neural Networks

Russo T, Franceschini S, D’Andrea L, Scardi M, Parisi A, Cataudella S. Predicting Fishing Footprint of Trawlers From Environmental and Fleet Data: An Application of Artificial Neural Networks. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00670/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The increasing use of tracking devices, such as the Vessel Monitoring System (VMS) and the Automatic Identification System (AIS), have allowed, in the last decade, detailed spatial and temporal analyses of fishing footprints and of their effects on environments and resources. Nevertheless, tracking devices usually allow monitoring of the largest length classes composing different fleets, whereas fishing vessels below a regulatory threshold (i.e., 15 m in length-over-all) are not mandatorily equipped with these tools. This issue is critical, since 36% of the vessels in the European Union (EU) fleets belong to these “hidden” length classes. In this study, a model [namely, a cascaded multilayer perceptron network (CMPN)] is devised to predict the annual fishing footprints of vessels without tracking devices. This model uses information about fleet structures, environmental characteristics, human activities, and fishing effort patterns of vessels equipped with tracking devices. Furthermore, the model is able to take into account the interactions between different components of the fleets (e.g., fleet segments), which are characterized by different operating ranges and compete for the same marine space. The model shows good predictive performance and allows the extension of spatial analyses of fishing footprints to the relevant, although still unexplored, fleet segments.

Fish assemblages in protected seagrass habitats: Assessing fish abundance and diversity in no-take marine reserves and fished areas

Kiggins RS, Knott NA, New T, Davis AR. Fish assemblages in protected seagrass habitats: Assessing fish abundance and diversity in no-take marine reserves and fished areas. Aquaculture and Fisheries [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S2468550X19301881
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine reserves are an important management tool for conserving local biodiversity and protecting fragile ecosystems such as seagrass that provide significant ecological functions and services to people and the marine environment. With humans placing ever-growing pressure on seagrass habitats, marine reserves also provide an important reference from which changes to seagrass and their ecological assemblages may be assessed. After eight years of protection of seagrass beds (Posidonia australis) in no-take marine reserves (Sanctuary Zones) within the Jervis Bay Marine Park (New South Wales, Australia; zoned in 2002), we aimed to assess what changes may have occurred and assess continuing change through time in fish assemblages within these seagrass meadows. Using baited remote underwater videos (BRUVs), we sampled seagrass fish assemblages at three locations in no-take zones and five locations in fished zones three times from 2010 to 2013. Overall, we observed a total of 2615 individuals from 40 fish species drawn from 24 families. We detected no differences in total fish abundance, diversity, or assemblage composition between management zones, although we observed a significant increase in Haletta semifasciata, a locally targeted fish species, in no-take marine reserves compared with fished areas. Fish assemblages in seagrass varied greatly amongst times and locations. Several species varied in relative abundance greatly over months and years, whilst others had consistently greater relative abundances at specific locations. We discuss the potential utility of marine reserves covering seagrass habitats and the value of baseline data from which future changes to seagrass fish populations may be measured.

Contextualizing the social-ecological outcomes of coral reef fisheries management

Johnson SM, Reyuw BM, Yalon A, McLean M, Houk P. Contextualizing the social-ecological outcomes of coral reef fisheries management. Biological Conservation [Internet]. In Press :108288. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0006320718311789
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Marine protected areas (MPAs) have emerged as a valuable tool in biodiversity conservation and fisheries management. However, the effective use of MPAs depends upon the successful integration of social and ecological information. We investigated relationships between the social system structure of coastal communities alongside biological data describing the status and trends in fish communities around Yap, Micronesia. Traditional marine tenure made Yap an ideal place to investigate the underlying principles of social-ecological systems, as communities own and manage spatially-defined coastal resources. Analysis of social survey data revealed three social regimes, which were linked to corresponding gradients of ecological outcomes. Communities with decentralized decision-making and a preference for communal forms of fishing had the greatest ecological outcomes, while communities lacking any form of leadership were linked to poor ecological outcomes. Interestingly, communities with strong top-down leadership were shown to have variable ecological outcomes, depending on the presence of key groups or individuals. We last investigated whether social perception could successfully predict the status of fish assemblages within non-managed reefs. Several biological metrics of fish assemblages within non-managed areas were significantly predicted by a gradient of human access, suggesting social perception could not predict the growing human footprint over the study period. These findings highlight the potentially overlooked role that community-oriented decision-making structures and fishing methods could play in successful conservation efforts, and the limitations of perception data. Policies that promote communal marine resource use offer a novel approach to improve fisheries management and promote social-ecological resilience.

Assessment of fishing-related plastic debris along the beaches in Kerala Coast, India

Daniel DBenny, Thomas SN, Thomson KT. Assessment of fishing-related plastic debris along the beaches in Kerala Coast, India. Marine Pollution Bulletin [Internet]. In Press :110696. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0025326X19308525
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

An assessment of quantity, composition and seasonal variation of fishing-related plastic debris was conducted in six beaches along the Kerala coast of India during 2017–2018. Plastic items were the most dominant type of waste constituting 73.8% by number and 59.9% by weight. In the total debris recorded, 5540 pieces (36%) weighing 198.4 kg (39.8%) were fishing related trash. On an average 14.4 ± 12 fishing related items/100 m2, corresponding to mean weight of 0.55 ± 0.7 kg/100 m2 was recorded from these beaches. Results indicated that the fishing-related plastic items were concentrated four times more in the beaches with higher fishing intensity, as compared to the other beaches. Also, the concentration of fishing-related plastic was recorded higher in the post-monsoon season compared to the lowest during monsoon, which was significant with p-value < 0.05. The results emphasize the role of fishing activities in the generation of marine litter.

Introductions and transfers of species by ballast water in the Adriatic Sea

Gollasch S, Hewitt CL, Bailey S, David M. Introductions and transfers of species by ballast water in the Adriatic Sea. Marine Pollution Bulletin [Internet]. 2019 ;147:8 - 15. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0025326X1830626X
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Following the Editorial addressing the BALMAS project, we open the ballast water management special issue for the Adriatic Sea by providing background information on non-indigenous species and the mechanisms (vectors) of transport. Problems allocating introduction mechanisms for various species with certainty are described; in general, key introduction mechanisms are shipping, with ballast water and biofouling as dominant vectors, and aquaculture activities. The dominant mechanisms for introduction may differ through time, between regions and across species. We highlight ballast water as the focus of an international convention to prevent future introductions, reviewing management options and suggesting future research needs. This assessment is not restricted in application to the Adriatic Sea, but is applicable to other coastal waters. Results of such future work may contribute to the experience building phase planned by the International Maritime Organization for a harmonised implementation of the Ballast Water Management Convention.

A new model of Holocene reef initiation and growth in response to sea-level rise on the Southern Great Barrier Reef

Sanborn KL, Webster JM, Webb GE, Braga JCarlos, Humblet M, Nothdurft L, Patterson MA, Dechnik B, Warner S, Graham T, et al. A new model of Holocene reef initiation and growth in response to sea-level rise on the Southern Great Barrier Reef. Sedimentary Geology [Internet]. In Press :105556. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0037073819302088
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

The fossil record provides valuable data for improving our understanding of both past and future reef resilience and vulnerability to environmental change. The spatial and temporal pattern of the initiation of the Holocene Great Barrier Reef presents a case study of reef response to rapid sea-level rise. Past studies have been limited by the lack of well-dated and closely spaced reef core transects and have not closely examined the composition of the reef-building communities through time. This study presents 80 new high precision U-Th and 5 radiocarbon ages from twelve new cores located along three transects across different geomorphic and hydrodynamic settings of One Tree Reef, southern Great Barrier Reef, to document three distinct stages of Holocene reef development in unprecedented detail. Temporal constraints on changing paleoecological assemblages of coral, coralline algae and associated biota revealed three distinct phases of reef development, consisting of: 1) a fast, shallow and clear-water reef initiation from 8.3 until 8 ka; 2) a shift to slower, deeper and more turbid-water reef growth from 8-7 ka; and 3) a return to shallow and rapid branching coral growth in clear-water conditions as the reef “catches up” to sea-level. A minimum lag prior to reef initiation of 700 years was identified, which differs in length depending on reef environment and Pleistocene substrate height. In this new model, reef growth initiated on the topographically lower leeward margin and patch reef, prior to the start of windward margin development, contrary to the traditional reef growth model. While there was a shift to conditions less favorable for reef growth at 8 ka, this did not prevent the slow accretion of more sediment-tolerant coral communities. The majority of the reef reached sea level by ~6 ka. This new conceptual model of Holocene reef growth provides new constraints on changes in paleoenvironment that controlled reef community composition and growth trajectories through sea-level rise following inundation.

Microplastics in beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea

Moore RC, Loseto L, Noel M, Etemadifar A, Brewster JD, MacPhee S, Bendell L, Ross PS. Microplastics in beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea. Marine Pollution Bulletin [Internet]. In Press :110723. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0025326X19308793
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Microplastics (MPs, particles <5 mm) represent an emerging global environmental concern, having been detected in multiple aquatic species. However, very little is known about the presence of MPs in higher trophic level species, including cetaceans. We worked with community based monitors and Inuvialuit hunters from Tuktoyaktuk (Northwest Territories, Canada) to sample seven beluga whales (Delphinapterus leucas) in 2017 and 2018. Microplastics were detected in the gastrointestinal tracts in every whale. We estimate that each whale contained 18 to 147 MPs in their GI tract (average of 97 ± 42 per individual). FTIR-spectroscopy revealed over eight plastic polymer types, with nearly half being polyester. Fibres made up 49% of MPs. The diversity of MP shapes and polymeric identities in beluga points to a complex source scenario, and ultimately raises questions regarding the significance and long-term exposure of this pollutant in this ecologically and culturally valuable species.

Microplastic in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure

Barboza LGabriel A, Lopes C, Oliveira P, Bessa F, Otero V, Henriques B, Raimundo J, Caetano M, Vale C, Guilhermino L. Microplastic in wild fish from North East Atlantic Ocean and its potential for causing neurotoxic effects, lipid oxidative damage, and human health risks associated with ingestion exposure. Science of The Total Environment [Internet]. In Press :134625. Available from: https://www.sciencedirect.com/science/article/pii/S0048969719346169
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Microplastics (MP) pollution has received increased attention over the last few years. However, while the number of studies documentating the ingestion of microplastics by fish has increased, fewer studies have addressed the toxicological effects derived from the ingestion of these small items in wild conditions. Here, MP contamination and effect biomarkers were investigated in three commercially important fish species from North East Atlantic Ocean. From the 150 analysed fish (50 per species), 49 % had MP. In fish from the 3 species, MP in the gastrointestinal tract, gills and dorsal muscle were found. Fish with MP had significantly (p ≤ 0.05) higher lipid peroxidation levels in the brain, gills and dorsal muscle, and increased brain acetylcholinesterase activity than fish where no MP were found. These results suggest lipid oxidative damage in gills and muscle, and neurotoxicity through lipid oxidative damage and acetylcholinesterase induction in relation to MP and/or MP-associated chemicals exposure. From the 150 fish analysed, 32 % had MP in dorsal muscle, with a total mean (± SD) of 0.054 ± 0.099 MP items/g. Based on this mean and on EFSA recommendation for fish consumption by adults or the general population, human consumers of Dicentrachus labraxTrachurus trachurusScomber colias may intake 842 MP items/year from fish consumption only. Based on the mean of MP in fish muscle and data (EUMOFA, NOAA) of fish consumption per capita in selected European and American countries, the estimated intake of microplastics through fish consumption ranged from 518 to 3078 MP items/year/capita. Considering that fish consumption is only one of the routes of human exposure to microplastics, this study and others in the literature emphasize the need for more research, risk assessment and adoption of measures to minimize human exposure to these particles. Thus, microplastics pollution and its effects should be further investigated and addressed according to the WHO ‘One Health’ approach.

Entrapment in plastic debris endangers hermit crabs

Lavers JL, Sharp PB, Stuckenbrock S, Bond AL. Entrapment in plastic debris endangers hermit crabs. Journal of Hazardous Materials [Internet]. In Press :121703. Available from: https://www.sciencedirect.com/science/article/pii/S0304389419316577
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Significant quantities of plastic debris pollute nearly all the world’s ecosystems, where it persists for decades and poses a considerable threat to flora and fauna. Much of the focus has been on the marine environment, with little information on the hazard posed by debris accumulating on beaches and adjacent vegetated areas. Here we investigate the potential for beach debris to disrupt terrestrial species and ecosystems on two remote islands. The significant quantities of debris on the beaches, and throughout the coastal vegetation, create a significant barrier which strawberry hermit crabs (Coenobita perlatus) encounter during their daily activities. Around 61,000 (2.447 crabs/m2) and 508,000 crabs (1.117 crabs/m2) are estimated to become entrapped in debris and die each year on Henderson Island and the Cocos (Keeling) Islands, respectively. Globally, there is an urgent need to establish a clear link between debris interactions and population persistence, as loss of biodiversity contributes to ecosystem degradation. Our findings show accumulating debris on these islands has the potential to seriously impact hermit crab populations. This is important for countless other islands worldwide where crabs and debris overlap, as crabs play a crucial role in the maintenance of tropical ecosystems.

Estimating a regional budget of marine plastic litter in order to advise on marine management measures

Turrell WR. Estimating a regional budget of marine plastic litter in order to advise on marine management measures. Marine Pollution Bulletin [Internet]. In Press :110725. Available from: https://www.sciencedirect.com/science/article/pii/S0025326X19308811
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Using simple models, coupled with parameters extracted from published studies, the annual inputs of macro and micro plastics to the Scottish Atlantic Coast and the Scottish North Sea Coast regions are estimated. Two estimates of land-based sources are used, scaled by catchment area population size. The oceanic supply of floating plastic is estimated for wind-driven and general circulation sources. Minimum, typical and maximum values are computed to examine the magnitude of uncertainties. Direct inputs from fishing and the flux of macroplastic onto the seabed are also included. The modelled estimates reveal the importance of local litter sources to Scottish coastal regions, and hence local management actions can be effective. Estimates provide a scale against which removal efforts may be compared, and provide input data for future more complex modelling. Recommendations for research to improve the preliminary estimates are provided. Methods presented here may be useful elsewhere.

Communicating marine climate change impacts in the Caribbean and Pacific regions

Townhill BL, Hills J, Murray PA, Nichols K, Pringle P, Buckley P. Communicating marine climate change impacts in the Caribbean and Pacific regions. Marine Pollution Bulletin [Internet]. In Press :110709. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0025326X19308653
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

The scientific literature on marine and coastal climate change has proliferated in recent decades. Translating and communicating this evidence in a timely, and accessible manner, is critical to support adaptation, but little is being done to summarise the latest science for decision makers. For Small Island Developing States (SIDS), which are highly vulnerable to marine and coastal climate change impacts, there is an urgent need to make the latest science readily available to inform national policy, leverage climate funding and highlight their vulnerability for international reports and climate negotiations. Climate change report cards are a proven successful way of presenting climate change information in an easily accessible and informative manner. Here we compare the development of marine climate change report cards for Caribbean and Pacific Commonwealth SIDS as a means of translating the latest science for decision makers. Regional engagement, priority issues and lessons learnt in these regions are compared, and future opportunities identified.

Pages

Subscribe to OpenChannels Literature Library