Literature Library

Currently indexing 9590 titles

A Suite of Field Manuals for Marine Sampling to Monitor Australian Waters

Przeslawski R, Foster S, Monk J, Barrett N, Bouchet P, Carroll A, Langlois T, Lucieer V, Williams J, Bax N. A Suite of Field Manuals for Marine Sampling to Monitor Australian Waters. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00177/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

One of the main challenges in assessing marine biodiversity is the lack of consistent approaches to monitor it. This threatens to undermine ocean best practice in marine monitoring, as it impedes a reduction in the bias and variance of sampled data and restricts the confidence in the advice that can be given. In particular, there is potential for confounding between the monitoring methods, their measured ecological properties, and the questions they seek to answer. Australia has developed significant long-term marine monitoring and observing programs and has one of the largest marine estates, including the world’s largest representative network of marine parks. This new network will require ongoing monitoring and evaluation, beyond what direct funding can support, which needs to be integrated in a standardized way with other national programs to develop sufficient monitoring capacity. The aim of this paper is to describe the process undertaken in developing a suite of field manuals that provide Standard Operating Procedures (SOPs) for marine sampling in Australian waters so that data are comparable over time and space, thereby supporting a robust, cost-effective, and objective national monitoring program. We encourage readers to refer to the complete manuals of interest at www.nespmarine.edu.au/field-manuals. We generally limit SOP development to benthic or demersal sampling, (multibeam, autonomous underwater vehicles, baited remoted underwater video (BRUV), towed imagery, grabs and box corers, sleds and trawls), with a few exceptions (e.g., pelagic BRUVs). Collaboration was a key characteristic of our approach so rather than single groups trying to impose their standards, more than 70 individuals from over 30 organizations contributed to the first version of this field manual package. We also discuss the challenges that arose while developing these national SOPs, the associated solutions that were implemented, and the plans for ensuring their long-term maintenance and national and international uptake. We anticipate that this paper will contribute to international collaborations by evoking valuable suggestions and sharing of lessons learnt from other national initiatives so that we might work toward a global ocean best practice for biological and geoscientific monitoring of the marine environment.

Coastal Mooring Observing Networks and Their Data Products: Recommendations for the Next Decade

Bailey K, Steinberg C, Davies C, Galibert G, Hidas M, McManus MA, Murphy T, Newton J, Roughan M, Schaeffer A. Coastal Mooring Observing Networks and Their Data Products: Recommendations for the Next Decade. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00180/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Instrumented moorings (hereafter referred to as moorings), which are anchored buoys or an anchored configuration of instruments suspended in the water column, are highly valued for their ability to host a variety of interchangeable oceanographic and meteorological sensors. This flexibility makes them a useful technology for meeting end user and science-driven requirements. Overall, societal needs related to human health, safety, national security, and economic prosperity in coastal areas are met through the availability of continuous data from coastal moorings and other complementary observing platforms within the Earth-observing system. These data streams strengthen the quality and accuracy of data products that inform the marine transportation industry, the tourism industry, fisheries, the military, public health officials, coastal and emergency managers, educators, and research scientists, among many others. Therefore, it is critical to sustain existing observing system networks, especially during this time of extreme environmental variability and change. Existing fiscal and operational challenges affecting the sustainability of observing networks will likely continue into the next decade, threatening the quality of downstream data and information products – especially those used for long-term monitoring, planning, and decision-making. This paper describes the utility of coastal moorings as part of an integrated coastal observing system, with an emphasis on stakeholder engagement to inform observing requirements and to ensure data products are tailored to user needs. We provide 10 recommendations for optimizing moorings networks, and thus downstream data products, to guide regional planners, and network operators:

1. Develop strategies to increase investment in coastal mooring networks

2. Collect stakeholder priorities through targeted and continuous stakeholder engagements

3. Include complementary systems and emerging technologies in implementation planning activities

4. Expand and sustain water column ecosystem moorings in coastal locations

5. Coordinate with operators and data managers across geographic scales

6. Standardize and integrate data management best practices

7. Provide open access to data

8. Promote environmental health and operational safety stewardship and regulatory compliance

9. Develop coastal mooring observing network performance metrics

10. Routinely monitor and assess the design of coastal mooring networks

Observing Sea States

Ardhuin F, Stopa JE, Chapron B, Collard F, Husson R, Jensen RE, Johannessen J, Mouche A, Passaro M, Quartly GD, et al. Observing Sea States. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00124/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Sea state information is needed for many applications, ranging from safety at sea and on the coast, for which real time data are essential, to planning and design needs for infrastructure that require long time series. The definition of the wave climate and its possible evolution requires high resolution data, and knowledge on possible drift in the observing system. Sea state is also an important climate variable that enters in air-sea fluxes parameterizations. Finally, sea state patterns can reveal the intensity of storms and associated climate patterns at large scales, and the intensity of currents at small scales. A synthesis of user requirements leads to requests for spatial resolution at kilometer scales, and estimations of trends of a few centimeters per decade. Such requirements cannot be met by observations alone in the foreseeable future, and numerical wave models can be combined with in situ and remote sensing data to achieve the required resolution. As today's models are far from perfect, observations are critical in providing forcing data, namely winds, currents and ice, and validation data, in particular for frequency and direction information, and extreme wave heights. In situ and satellite observations are particularly critical for the correction and calibration of significant wave heights to ensure the stability of model time series. A number of developments are underway for extending the capabilities of satellites and in situ observing systems. These include the generalization of directional measurements, an easier exchange of moored buoy data, the measurement of waves on drifting buoys, the evolution of satellite altimeter technology, and the measurement of directional wave spectra from satellite radar instruments. For each of these observing systems, the stability of the data is a very important issue. The combination of the different data sources, including numerical models, can help better fulfill the needs of users.

Key Challenges in Advancing an Ecosystem-Based Approach to Marine Spatial Planning Under Economic Growth Imperatives

Lombard AT, Dorrington RA, Reed JRomay, Ortega-Cisneros K, Penry GSusan, Pichegru L, Smit KPam, Vermeulen EAnn, Witteveen M, Sink KJ, et al. Key Challenges in Advancing an Ecosystem-Based Approach to Marine Spatial Planning Under Economic Growth Imperatives. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00146/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In 2017, South Africa became the first African country to draft Marine Spatial Planning (MSP) legislation. The underlying legal framework supports the achievement of ecological, social and economic objectives, but a national policy to fast track the oceans economy provides a challenge for ecosystem-based approaches to MSP. During the 2018 International Marine Conservation Congress, we convened a session to present particular challenges that will likely apply to any developing country seeking to increase profits from existing, or proposed, marine activities. Here we present six multi-disciplinary research projects that support ecosystem-based approaches to MSP in South Africa, by addressing the following knowledge gaps and specific key challenges: (1) the lack of data-derived measurements of ecosystem condition (and the need to validate commonly-used proxy measures); (2) the need to develop models to better understand the potential impacts of climate change on food webs and fisheries; (3) the slow implementation of an ecosystem approach to fisheries management, and the need to implement existing legal instruments that can support such an approach; (4) the paucity of evidence supporting dynamic ocean management strategies; (5) the requirement to manage conflicting objectives in growing marine tourism industries; and (6) the need to adopt systems thinking approaches to support integrated ocean management. We provide examples of specific research projects designed to address these challenges. The ultimate goal of this research is to advance a more integrated approach to ocean management in South Africa, using tools that can be applied in countries with similar socio-political and environmental contexts.

Assessment of the Plastic Inputs From the Seine Basin to the Sea Using Statistical and Field Approaches

Tramoy R, Gasperi J, Dris R, Colasse L, Fisson C, Sananes S, Rocher V, Tassin B. Assessment of the Plastic Inputs From the Seine Basin to the Sea Using Statistical and Field Approaches. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00151/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Global estimations state that between 0.5 and 12.7 million metric tons of plastic enter the oceans each year. They are, however, associated with great uncertainties due to methodological difficulties to accurately quantify land-based plastic fluxes into the oceans. New studies at basin scale are thus needed for better model calibrations. Here, a modeling approach based on Jambeck’s statistical method and a field approach are compared in order to (i) quantify plastic fluxes in the Seine River and (ii) characterize and constrain uncertainties of both approaches. Despite the simplicity of the statistical approach and rough extrapolations, both methods yield similar results, i.e., between 1,100 and 5,900 t/yr of plastic litter flowing into the Sea of which about 88–128 t/yr are removed by cleaning operations. According to the marine strategy framework directive (2008/56/EC), actions are required to quantify plastic fluxes entering the oceans. Among different methods, a better use of the data from the waste collection should be considered. The development of a national and homogenous platform listing all the collects would be a first step in that direction.

Habitat Use and Behavior of Multiple Species of Marine Turtles at a Foraging Area in the Northeastern Gulf of Mexico

Wildermann NE, Sasso CR, Stokes LW, Snodgrass D, Fuentes MMPB. Habitat Use and Behavior of Multiple Species of Marine Turtles at a Foraging Area in the Northeastern Gulf of Mexico. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00155/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Multi-species conservation strategies can be useful to maximize allocation of resources. To effectively plan for multi-species management practices, it is important to have a robust understanding of the variability in the spatial and behavioral ecology of sympatric species. To address this in the context of marine turtles, this study explored fine-scale habitat use by three sympatric species [juvenile green turtles (Chelonia mydas), Kemp’s ridley turtles (Lepidochelys kempii) and loggerhead turtles (Caretta caretta)] in a foraging area near Crystal River, Florida, United States. By combining sighting surveys and satellite tracking methods, we found that the distribution of the three species of marine turtles in this region overlapped both in space and time. We also observed differences in the fine-scale location of hotspots and in-water behavior among species, with some degree of apparent habitat partitioning. Habitat partitioning was particularly evident when assessing the diving and surfacing behavior of tracked turtles, with some degree of differentiation in diel diving patterns, particularly depths utilized during daytime/nighttime and the dive/surface duration. Our study provides ecological baseline data on the spatial overlap, habitat use and behavior of three sympatric marine turtle species, which can inform future management strategies at nearshore marine habitats in the Northeastern Gulf of Mexico.

Differential effects of biological invasions on coastal blue carbon: A global review and meta-analysis

Davidson IC, Cott GM, Devaney JL, Simkanin C. Differential effects of biological invasions on coastal blue carbon: A global review and meta-analysis. Global Change Biology [Internet]. 2018 ;24(11):5218 - 5230. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.14426
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $42.00
Type: Journal Article

Human‐caused shifts in carbon (C) cycling and biotic exchange are defining characteristics of the Anthropocene. In marine systems, saltmarsh, seagrass, and mangrove habitats—collectively known as “blue carbon” and coastal vegetated habitats (CVHs)—are a leading sequester of global C and increasingly impacted by exotic species invasions. There is growing interest in the effect of invasion by a diverse pool of exotic species on C storage and the implications for ecosystem‐based management of these systems. In a global meta‐analysis, we synthesized data from 104 papers that provided 345 comparisons of habitat‐level response (plant and soil C storage) from paired invaded and uninvaded sites. We found an overall net effect of significantly higher C pools in invaded CVHs amounting to 40% (±16%) higher C storage than uninvaded habitat, but effects differed among types of invaders. Elevated C storage was driven by blue C‐forming plant invaders (saltmarsh grasses, seagrasses, and mangrove trees) that intensify biomass per unit area, extend and elevate coastal wetlands, and convert coastal mudflats into C‐rich vegetated habitat. Introduced animal and structurally distinct primary producers had significant negative effects on C pools, driven by herbivory, trampling, and native species displacement. The role of invasion manifested differently among habitat types, with significant C storage increases in saltmarshes, decreases in seagrass, and no significant effect in mangroves. There were also counter‐directional effects by the same species in different systems or locations, which underscores the importance of combining data mining with analyses of mean effect sizes in meta‐analyses. Our study provides a quantitative basis for understanding differential effects of invasion on blue C habitats and will inform conservation strategies that need to balance management decisions involving invasion, C storage, and a range of other marine biodiversity and habitat functions in these coastal systems.

Cetacean sightings within the Great Pacific Garbage Patch

Gibbs SE, Kent CPSalgado, Slat B, Morales D, Fouda L, Reisser J. Cetacean sightings within the Great Pacific Garbage Patch. Marine Biodiversity [Internet]. 2019 . Available from: https://link.springer.com/article/10.1007/s12526-019-00952-0
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Here, we report cetacean sightings made within a major oceanic accumulation zone for plastics, often referred to as the ‘Great Pacific Garbage Patch’ (GPGP). These cetacean records occurred in October 2016 and were made by sensors and trained observers aboard a Hercules C-130 aircraft surveying the GPGP at 400 m height and 140 knots speed. Four sperm whales (including a mother and calf pair), three beaked whales, two baleen whales, and at least five other cetaceans were observed. Many surface drifting plastics were also detected, including fishing nets, ropes, floats and fragmented debris. Some of these objects were close to the sighted mammals, posing entanglement and ingestion risks to animals using the GPGP as a migration corridor or core habitat. Our study demonstrates the potential exposure of several cetacean species to the high levels of plastic pollution in the area. Further research is required to evaluate the potential effects of the GPGP on marine mammal populations inhabiting the North Pacific.

Killer whales redistribute white shark foraging pressure on seals

Jorgensen SJ, Anderson S, Ferretti F, Tietz JR, Chapple T, Kanive P, Bradley RW, Moxley JH, Block BA. Killer whales redistribute white shark foraging pressure on seals. Scientific Reports [Internet]. 2019 ;9(1). Available from: https://www.nature.com/articles/s41598-019-39356-2
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Predatory behavior and top-down effects in marine ecosystems are well-described, however, intraguild interactions among co-occurring marine top predators remain less understood, but can have far reaching ecological implications. Killer whales and white sharks are prominent upper trophic level predators with highly-overlapping niches, yet their ecological interactions and subsequent effects have remained obscure. Using long-term electronic tagging and survey data we reveal rare and cryptic interactions between these predators at a shared foraging site, Southeast Farallon Island (SEFI). In multiple instances, brief visits from killer whales displaced white sharks from SEFI, disrupting shark feeding behavior for extended periods at this aggregation site. As a result, annual predations of pinnipeds by white sharks at SEFI were negatively correlated with close encounters with killer whales. Tagged white sharks relocated to other aggregation sites, creating detectable increases in white shark density at Ano Nuevo Island. This work highlights the importance of risk effects and intraguild relationships among top ocean predators and the value of long-term data sets revealing these consequential, albeit infrequent, ecological interactions.

Global thresholds in properties emerging from cumulative curves of marine ecosystems

Libralato S, Pranovi F, Zucchetta M, Monti MAnelli, Link JS. Global thresholds in properties emerging from cumulative curves of marine ecosystems. Ecological Indicators [Internet]. 2019 ;103:554 - 562. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X19302341
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

There are several emergent properties useful as indicators of marine ecosystem status. Some of these are based on the cumulative trophic theory, which posits that biomass and production accumulate in repeatable and predictable patterns across trophic levels. These patterns result in a suite of curve parameters that can delineate when a marine ecosystem is undergoing perturbation or recovery. When looking at this suite of curve parameters, and their trajectories over time, a clear sense of perturbation, recovery, or transition can be delineated. From a set of over 3700 observations we established empirical threshold levels for the curve parameters, i.e., Trophic Level inflection point, Biomass inflection point and Steepness at 3.38 ± 0.05, 0.33 ± 0.01 and 0.50 ± 0.56, respectively. When the three parameters are examined collectively to determine whether a particular ecosystem datum was below or above each of these three thresholds, clear three-dimensional patterns emerged. First, some volumes in this 3-D space of parameters simply did not have data, and many volumes had very little. The majority of data (approximately 40%) occurred in situations with Steepness and Biomass inflection point higher than thresholds. Almost none of the ecosystems (<1%) was below all three thresholds at any point in time, a quarter of the data resulted in critical conditions for at least a couple of indicators, a little less than half of the ecosystems (52%) at any point in time seem to be quite functional from this emergent property perspective, and finally, a moderate number of ecosystems, at any point in time (22%), seem to be in some type of transition state. We assert that these emergent properties have value for delineating ecosystem state, and at the very least when the Biomass inflection point is <33% an ecosystem is understood to have been severely degraded. Using these three thresholds, and identifying whether data trajectories are crossing them or not, has strong potential to better indicate the status of marine ecosystems, trajectories thereof, and hence when management interventions are needed.

Integrating fisheries management into sustainable development planning

Arkema KK, Rogers LA, Toft J, Mesher A, Wyatt KH, Albury-Smith S, Moultrie S, Ruckelshaus MH, Samhouri J. Integrating fisheries management into sustainable development planning. Ecology and Society [Internet]. 2019 ;24(2). Available from: https://www.ecologyandsociety.org/vol24/iss2/art1/
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Scientific understanding of coupled social-ecological systems has grown considerably in recent years, especially for fisheries and ocean management. However, few studies test the utility of approaches that capture multiple interactions between people and ecosystems within a real-world planning process. We developed a set of quantitative models that estimate catch and revenue from the Caribbean spiny lobster (Panulirus argus) fishery as a function of coastal habitat extent and quality. We applied the models iteratively, with input from stakeholders, to assess fisheries outcomes of alternative scenarios for integrated coastal zone management in Belize and sustainable development planning in The Bahamas. We found that integrated management reduces risk to nursery habitats from multiple coastal and marine activities and increases lobster catch and revenue by large margins. In Belize, siting activities such as marine transportation and tourism development to explicitly reduce risk to nursery and adult habitats enhanced returns from the lobster fishery. In The Bahamas, strategic investments in economic development that focused on updating existing infrastructure, such as roads, rather than expanding the footprint of development, increased the catch of lobster by approximately half again as much relative to a business as usual scenario. Our findings show how models that link spatial information about coastal habitats and the dynamics of a key fishery can inform expected change in catch and revenue as a result of coastal management. In addition to strengthening stakeholder understanding of social-ecological relationships and highlighting national-scale outcomes of regional development decisions, modeled results allowed us to transparently and effectively improve coastal plans to achieve the goals of the citizens and governments of Belize and The Bahamas. These cases illustrate how models that account for relationships between development, nursery habitats, and fishing catch and revenue can elevate the importance of fisheries management in national development decisions.

Evaluating the impacts of protected areas on human well-being across the developing world

Naidoo R, Gerkey D, Hole D, Pfaff A, Ellis AM, Golden CD, Herrera D, Johnson K, Mulligan M, Ricketts TH, et al. Evaluating the impacts of protected areas on human well-being across the developing world. Science Advances [Internet]. 2019 ;5(4):eaav3006. Available from: https://advances.sciencemag.org/content/5/4/eaav3006
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Protected areas (PAs) are fundamental for biodiversity conservation, yet their impacts on nearby residents are contested. We synthesized environmental and socioeconomic conditions of >87,000 children in >60,000 households situated either near or far from >600 PAs within 34 developing countries. We used quasi-experimental hierarchical regression to isolate the impact of living near a PA on several aspects of human well-being. Households near PAs with tourism also had higher wealth levels (by 17%) and a lower likelihood of poverty (by 16%) than similar households living far from PAs. Children under 5 years old living near multiple-use PAs with tourism also had higher height-for-age scores (by 10%) and were less likely to be stunted (by 13%) than similar children living far from PAs. For the largest and most comprehensive socioeconomic-environmental dataset yet assembled, we found no evidence of negative PA impacts and consistent statistical evidence to suggest PAs can positively affect human well-being.

Planning at Sea: Shifting planning practices at the German North Sea coast

Walsh C, Kannen A. Planning at Sea: Shifting planning practices at the German North Sea coast. Raumforschung und Raumordnung [Internet]. 2019 . Available from: https://content.sciendo.com/view/journals/rara/ahead-of-print/article-10.2478-rara-2019-0020.xml
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coastal and marine areas represent an increasingly important and relevant action space for spatial planning. However, to a large extent marine (or maritime) spatial planning has emerged separately from terrestrial spatial planning, constituting its own epistemic community. In particular, previous studies indicate that Marine Spatial Planning often follows an expert-driven resource management rationale focused on sea-use regulation. This paper examines practices of Marine Spatial Planning and Integrated Coastal Zone Management at the German North Sea coast. The paper focuses in particular on the engagement of spatial planners with these practices and their perception of their role therein. We seek to understand what form spatial planning at the coast and at sea currently takes and how this might develop in the future in response to current and anticipated policy developments. We argue for the necessity of a communicative, cross-sectoral approach to spatial planning at sea, providing a spatial vision for the future that extends from the Exclusive Economic Zone to encompass both the coastal waters of the federal states and the land-sea interface in a substantive manner.

Sixty years of tracking conservation progress using the World Database on Protected Areas

Bingham HC, Bignoli DJuffe, Lewis E, Macsharry B, Burgess ND, Visconti P, Deguignet M, Misrachi M, Walpole M, Stewart JL, et al. Sixty years of tracking conservation progress using the World Database on Protected Areas. Nature Ecology & Evolution [Internet]. 2019 . Available from: https://www.nature.com/articles/s41559-019-0869-3
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $8.99
Type: Journal Article

The world’s protected area network is constantly changing, and the dynamics of this network are tracked using the World Database on Protected Areas (WDPA). This database evolved from a list of protected areas first mandated by the United Nations in 1959, and it now informs the key indicators that track progress toward area-based conservation targets. In this capacity, the WDPA illuminates the role of protected areas in advancing a range of international objectives and agreements, including the Convention on Biological Diversity and the Sustainable Development Goals. Despite ongoing challenges in maintaining such a complex global dataset, the WDPA is continuously improving and taking advantage of new technology, making it widely applicable to diverse users, including those in sectors far from its original intended audience. In the future, the WDPA will expand to include areas that contribute to conservation and sustainable use outside of formal protected areas, and will increasingly link to other key global datasets. These innovations in the way the WDPA is managed and used will deliver vital knowledge to support a sustainable future for biodiversity and people globally.

High-profile international commitments for ocean protection: Empty promises or meaningful progress?

Grorud-Colvert K, Constant V, Sullivan-Stack J, Dziedzic K, Hamilton SL, Randell Z, Fulton-Bennett H, Meunier ZD, Bachhuber S, Rickborn AJ, et al. High-profile international commitments for ocean protection: Empty promises or meaningful progress?. Marine Policy [Internet]. 2019 ;105:52 - 66. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X18307371
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

As 2020 approaches, countries are accelerating their commitments to protect 10% of the ocean by establishing and expanding marine protected areas (MPAs) and other area-based protections. Since it began in 2014, the Our Ocean Conference (OOC) has become a high-profile platform to announce ocean commitments. To evaluate the impact of these promises, this analysis asked: (1) What are the MPA commitments? (2) Who is making them? (3) Have these announcements been followed by action? and (4) Have they contributed significantly to ocean protection? A systematic review of the 143 MPA announcements made at the four OOCs between 2014 and 2017 (and the 202 individual actions they encompassed) concluded that the numbers and sectors of announcers, as well as the types of actions, increased over time. Fifty-two countries and 52 other organizations made OOC commitments, 46% of which have been completed and 56% of which are still incomplete. Thirteen countries and 17 organizations have completed all of their actions. All organizations and 48 out of 52 countries have made some progress on their actions, but no evidence of progress could be found for actions from four countries. OOC announcements have promised to protect 3.4% of the ocean (12,279,931 km2). To date, 43% of that promised area has been implemented, with another 57% yet to be implemented. Based on these findings, a number of actions are recommended to improve the clarity and traceability of OOC announcements, facilitate the monitoring of outcomes, and deliver on the promise of accountability emphasized at the OOCs.

Measuring Vulnerability of Marine and Coastal Habitats’ Potential to Deliver Ecosystem Services: Complex Atlantic Region as Case Study

Willaert T, García-Alegre A, Queiroga H, Cunha-e-Sá MA, Lillebø AIsabel. Measuring Vulnerability of Marine and Coastal Habitats’ Potential to Deliver Ecosystem Services: Complex Atlantic Region as Case Study. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00199/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The main objective of this work is to promote Ecosystem Based Management (EBM), using a complex Atlantic region, to demonstrate how the InVEST model tool and associated methods can be applied to calculate benthic habitats cumulative risk and to create a vulnerability index of the potential of these habitats to deliver ecosystem services (ES). The study area, in the Western-Atlantic coast of Portugal, includes the Nazaré Canyon (>3,000 m depth within the study region), Óbidos Lagoon (transitional waters), São Martinho do Porto bay (marine inlet), and Berlengas Archipelago (UNESCO world biosphere reserve). The ES delivered by this complex coastal region supports the main regional/local socio-economic activities (e.g., fisheries and tourism activities). The approach combined the InVEST habitat risk assessment tool with the identified ES to create a proxy for the habitats’ vulnerability to deliver ES. Within the region 28 marine benthic habitats were identified and combined with 12 classes of ES (Common International Classification of ES), and two prospective scenarios were analyzed (a potential socio-economic scenario for 2025 and a climate change scenario for the end of the century). The results show that the applied vulnerability approach enables the combination of information from different sources, including local knowledge, and the translation of the generated information into 2D spatial explicit maps that can support strategic management options, namely in the context of maritime spatial planning and “Blue Growth.” The interpretation of the habitat vulnerability approach requires the consideration of data spatial resolution, its quality, and the impact of associated pressures. However, despite the limitations and assumptions (e.g., all ES classes are equally important), models such as this have opened new avenues contributing to improve EBM, by combining spatial explicit GIS tools with supply and demand of marine ES, human activities, and their related positive and negative impacts.

The Seasonal and Inter-Annual Fluctuations of Plankton Abundance and Community Structure in a North Atlantic Marine Protected Area

Benedetti F, Jalabert L, Sourisseau M, Becker B, Cailliau C, Desnos C, Elineau A, Irisson J-O, Lombard F, Picheral M, et al. The Seasonal and Inter-Annual Fluctuations of Plankton Abundance and Community Structure in a North Atlantic Marine Protected Area. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00214/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine Protected Areas have become a major tool for the conservation of marine biodiversity and resources. Yet our understanding of their efficacy is often limited because it is measured for a few biological components, typically top predators or species of commercial interest. To achieve conservation targets, marine protected areas can benefit from ecosystem-based approaches. Within such an approach, documenting the variation of plankton indicators and their covariation with climate is crucial as plankton represent the base of the food webs. With this perspective, we sought to document the variations in the emerging properties of the plankton to better understand the dynamics of the pelagic fishes, mammals and seabirds that inhabit the region. For the first time, we analyze the temporal variations of the entire plankton community of one of the widest European protected areas, the Parc Naturel Marin de la Mer d’Iroise. We used data from several sampling transects carried out in the Iroise Sea from 2011 to 2015 to explore the seasonal and inter-annual variations of phytoplankton and mesozooplankton abundance, composition and size, as well as their covariation with abiotic variables, through multiple multivariate analyses. Overall, our observations are coherent with the plankton dynamics that have been observed in other regions of the North-East Atlantic. We found that both phytoplankton and zooplankton show consistent seasonal patterns in taxonomic composition and size structure but also display inter-annual variations. The spring bloom was associated with a higher contribution of large chain-forming diatoms compared to nanoflagellates, the latter dominating in fall and summer. Dinoflagellates show marked inter-annual variations in their relative contribution. The community composition of phytoplankton has a large impact on the mesozooplankton together with the distance to the coast. The size structure of the mesozooplankton community, examined through the ratio of small to large copepods, also displays marked seasonal patterns. We found that larger copepods (members of the Calanidae) are more abundant in spring than in summer and fall. We propose several hypotheses to explain the observed temporal patterns and we underline their importance for understanding the dynamics of other components of the food-web (such as sardines). Our study is a first step toward the inclusion of the planktonic compartment into the planning of the resources and diversity conservation within the Marine Protected Area.

Spatial variation in allometric growth of invasive lionfish has management implications

Villaseñor-Derbez JCarlos, Fitzgerald S. Spatial variation in allometric growth of invasive lionfish has management implications. PeerJ [Internet]. 2019 ;7:e6667. Available from: https://peerj.com/articles/6667/
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Lionfish (Pterois volitans/miles) are an invasive species in the Western Atlantic and the Caribbean. Improving management of invasive lionfish populations requires accurate total biomass estimates, which depend on accurate estimates of allometric growth; sedentary species like lionfish often exhibit high levels of spatial variation in life history characteristics. We reviewed 17 published length-weight relationships for lionfish taken throughout their invasive range and found regional differences that led to significant misestimates when calculating weight from length observations. The spatial pattern we observed is consistent with findings from other studies focused on genetics or length-at-age. Here, the use of ex situparameter values resulted in total biomass estimates between 76.2% and 140% of true observed biomass, and up to a threefold under- or overestimation of total weight for an individual organism. These findings can have implications for management in terms of predicting effects on local ecosystems, evaluating the effectiveness of removal programs, or estimating biomass available for harvest.

Weighing the benefits of expanding protected areas versus managing existing ones

Adams VM, Iacona GD, Possingham HP. Weighing the benefits of expanding protected areas versus managing existing ones. Nature Sustainability [Internet]. 2019 . Available from: https://www.nature.com/articles/s41893-019-0275-5
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $8.99
Type: Journal Article

Protected areas are a fundamental mechanism for conserving global biodiversity. Given limited conservation funds and shortfalls in funding for existing protected area management needs, a critical question is: should countries and states spend new funds on purchasing more land or managing existing protected areas to an acceptable standard? We used a non-spatial dynamic landscape model to compare the relative importance of expansion of protected areas versus improved protected area management in diverse contexts. We provide guidance on how to allocate funding across these two actions, and the order in which these actions should be prioritized. We discover that, in contrast with spending patterns, which focus on expansion rather than management, management is often the better first investment. The relative priority of expansion and management is determined by observable factors: the relative costs of the two actions and rates of degradation in protected and unprotected areas. Importantly, regardless of these factors, the final recommended action is always to split the budget across expansion and management such that there is adequate money for management. This highlights that, while our existing protected areas are an important asset, increased investment in management is essential to maximize their potential to protect biodiversity.

Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems

Zunino S, Canu DMelaku, Zupo V, Solidoro C. Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Global Ecology and Conservation [Internet]. 2019 :e00625. Available from: https://www.sciencedirect.com/science/article/pii/S2351989418305328
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

Increasing emissions of CO2 and the resultant ocean acidification (OA) will have large implications for the marine ecosystems sustained by habitat-forming species and their related ecosystem services (ES), with potentially significant impacts on human well-being. Here, we provide an assessment of the direct and indirect impacts of OA on ES. The changes in the functioning of coralligenous reefs and Posidonia oceanica meadows promoted by OA were investigated by i) synthesizing current knowledge into conceptual models. The models were then used to, ii) assessing the impacts of exposure of the selected taxa at the acidification level associated with two CO2 emission scenarios and iii) using the conceptual model outputs to project the cascading impacts from individuals to functions to ES.

The results highlight that the combination of the direct and indirect effects of acidification will alter many functions of both coralligenous and P.oceanica systems, triggering habitat modifications and the loss of highly valuable ES.

While the exact timing of the expected changes will depend on the severity of the emission scenarios, significant and hardly reversible changes can be expected as quickly as a few decades under the business-as-usual scenario, and many ecosystem services are at risk even under much more conservative scenarios.

Pages

Subscribe to OpenChannels Literature Library