Literature Library

Currently indexing 9349 titles

Tools and constraints in monitoring interactions between marine litter and megafauna: Insights from case studies around the world

Claro F, Fossi MC, Ioakeimidis C, Baini M, Lusher AL, W. Fee M, McIntosh RR, Pelamatti T, Sorce M, Galgani F, et al. Tools and constraints in monitoring interactions between marine litter and megafauna: Insights from case studies around the world. Marine Pollution Bulletin [Internet]. 2019 ;141:147 - 160. Available from: https://www.sciencedirect.com/science/article/pii/S0025326X19300189
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Adverse impacts of marine litter is documented on >1400 species, including marine megafauna (fish, birds, sea turtles and mammals). The primary impacts include ingestion and entanglement, and there is increasing concern about chemical contamination via ingestion. Numerous survey approaches and monitoring programs have been developed and implemented around the world. They may aim to provide data about parameters such as species distribution and interactions with anthropogenic activities. During the Sixth International Marine Debris Conference, a session was dedicated to the tools and constraints in monitoring interactions between litter and megafauna. In the present paper, we summarize 7 case studies which discuss entanglement and ingestion including macro- and micro-debris in several taxa and across multiple geographic regions. We then discusses the importance of tools and standardizing methods for assessment and management purposes, in the context of international environmental policies and marine litter strategies.

Synthesizing expert opinion to assess the at-sea risks to seabirds in the western North Atlantic

Lieske DJ, Tranquilla LMcFarlane, Ronconi R, Abbott S. Synthesizing expert opinion to assess the at-sea risks to seabirds in the western North Atlantic. Biological Conservation [Internet]. 2019 ;233:41 - 50. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0006320718306670
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Marine environments are subject to a range of human disturbances. Identifying effective conservation strategies, in order to manage or mitigate the negative impacts of human activities, requires a way to first identify and evaluate the impact of activities on ecosystem components. Multicriteria decision analysis (MCDA) techniques such as the Analytic Hierarchy Process (AHP) offer a way to systematically evaluate and integrate stakeholder opinion in order to set priorities and make decisions. With a goal to synthesize current knowledge of the potential impacts of human activity on breeding and non-breeding seabirds in the western North Atlantic Ocean, we present a case study involving the use of AHP to assess sensitivity of species to such hazards as: fisheries bycatch, oiling, light pollution, vessel traffic, marine debris, and offshore wind turbines. Based on responses from ten North Atlantic seabird experts, fisheries bycatch (particularly when involving suspended gill nets) was identified as the greatest risk across a wide range of species, with an overall relative value of 0.47 ± SE 0.026. Oiling risk was the second most highly ranked (0.26 ± 0.026, of which 0.214 corresponded with surface oil, 0.044 with oil and gas platform interactions), and was considered to have the greatest potential impact on alcids (Common and Thick-billed Murre, Atlantic Puffin, Razorbill, Dovekie). Offshore wind turbines (0.097 ± 0.022), marine debris (0.08 ± 0.016), light pollution (0.058 ± 0.0077), and traffic (0.042 ± 0.0053) were considered to be less serious risks for seabirds than fisheries bycatch and oiling. In addition to demonstrating how relative risk can be quantified using a multicriteria decision analysis technique such as AHP, we summarize the sensitivities of fourteen seabirds and suggest ways in which multicriteria decision analysis can enhance conservation planning.

A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning

Pınarbaşı K, Galparsoro I, Depellegrin D, Bald J, Pérez-Morán G, Borja A. A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning. Science of The Total Environment [Internet]. 2019 . Available from: https://www.sciencedirect.com/science/article/pii/S0048969719307661
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $41.95
Type: Journal Article

Demand for renewable energy is increasing steadily and regulated by national and international policies. Offshore wind energy sector has been clearly the fastest in its development among other options, and development of new wind farms requires large ocean space. Therefore, there is a need of efficient spatial planning process, including the site selection constrained by technical (wind resource, coastal distance, seafloor) and environmental (impacts) factors and competence of uses. We present a novel approach, using Bayesian Belief Networks (BBN), for an integrated spatially explicit site feasibility identification for offshore wind farms. Our objectives are to: (i) develop a spatially explicit model that integrates the technical, economic, environmental and social dimensions; (ii) operationalize the BBN model; (iii) implement the model at local (Basque Country) and regional (North East Atlantic and Western Mediterranean), and (iv) develop and analyse future scenarios for wind farm installation in a local case study. Results demonstrated a total of 1% (23 km2) of moderate feasibility areas in local scaled analysis, compared to 4% of (21,600 km2) very high, and 5% (30,000 km2) of high feasibility in larger scale analysis. The main challenges were data availability and discretization when trying to expand the model from local to regional level. The use of BBN models to determine the feasibility of offshore wind farm areas has been demonstrated adequate and possible, both at local and regional scales, allowing managers to take management decisions regarding marine spatial planning when including different activities, environmental problems and technological constraints.

The Kelp Cultivation Potential in Coastal and Offshore Regions of Norway

Broch OJacob, Alver MOmholt, Bekkby T, Gundersen H, Forbord S, Handå A, Skjermo J, Hancke K. The Kelp Cultivation Potential in Coastal and Offshore Regions of Norway. Frontiers in Marine Science [Internet]. 2019 ;5. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2018.00529/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

We have evaluated the cultivation potential of sugar kelp (Saccharina latissima) as a function of latitude and position (near- and offshore) along the Norwegian coast using a coupled 3D hydrodynamic-biogeochemical-kelp model system (SINMOD) run for four growth seasons (2012–2016). The results are spatially explicit and may be used to compare the suitability of different regions for kelp cultivation, both inshore and offshore.The simulation results were compared with growth data from kelp cultivation experiments and in situ observations on coverage of naturally growing kelp. The model demonstrated a higher production potential offshore than in inshore regions, which is mainly due to the limitations in nutrient availability caused by the stratification found along the coast. However, suitable locations for kelp cultivation were also identified in areas with high vertical mixing close to the shore. The results indicate a latitudinal effect on the timing of the optimal period of growth, with the prime growth period being up to 2 months earlier in the south (58 °N) than in the north (71 °N). Although the maximum cultivation potential was similar in the six marine ecoregions in Norway (150–200 tons per hectare per year), the deployment time of the cultures seems to matter significantly in the south, but less so in the north. The results are discussed, focusing on their potential significance for optimized cultivation and to support decision making toward sustainable management.

Past, Present and Future Eutrophication Status of the Baltic Sea

Murray CJ, Müller-Karulis B, Carstensen J, Conley DJ, Gustafsson BG, Andersen JH. Past, Present and Future Eutrophication Status of the Baltic Sea. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00002/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

We modelled and assessed the past, present and predicted future eutrophication status of the Baltic Sea. The assessment covers a 350-year period from 1850 to 2200 and is based on: (1) modelled concentrations of dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorous (DIP), chlorophyll-a, Secchi depth, and oxygen under four different of nutrient input scenarios and (2) the application of a multi-metric indicator-based tool for assessment of eutrophication status: HEAT 3.0. This tool was previously applied using historical observations to determine eutrophication status from 1901 to 2012. Here we apply HEAT 3.0 using results of a biogeochemical model to reveal significant changes in eutrophication status from 1850 to 2200. Under two scenarios where Baltic Sea Action Plan (BSAP) nutrient reduction targets are met, we expect future good status will be achieved in most Baltic Sea basins. Under two scenarios where nutrient loads remain at 1997–2003 levels or increase, good status will not be achieved. The change from a healthy state without eutrophication problems in the open waters took place in the late 1950s and early 1960s. Following introduction of the first nutrient abatement measures, recovery began in some basins in the late 1990s, whilst in others it commenced in the beginning of the 21st century. Based on model results, we expect that the first basin to achieve a status without eutrophication will be Arkona, between 2030 and 2040. By 2060–2070, a status without eutrophication is anticipated for the Kattegat, Bornholm Basin and Gulf of Finland, followed by the Danish straits around 2090. For the Baltic Proper and Bothnian Sea, a good status with regard to eutrophication is not expected before 2200. Further, we conclude that two basins are not likely to meet the targets agreed upon and to attain a status unaffected by eutrophication, i.e., the Gulf of Riga and Bothnian Bay. These results, especially the prediction that some basins will not achieve a good status, can be used in support of continuous development and implementation of the regional ecosystem-based nutrient management strategy, the HELCOM Baltic Sea Action Plan.

The great barrier reef: A source of CO2 to the atmosphere

Lønborg C, Calleja MLl, Fabricius KE, Smith JN, Achterberg EP. The great barrier reef: A source of CO2 to the atmosphere. Marine Chemistry [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S0304420318300471
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

The Great Barrier Reef (GBR) is the largest contiguous coral reef system in the world. Carbonate chemistry studies and flux quantification within the GBR have largely focused on reef calcification and dissolution, with relatively little work on shelf-scale CO2 dynamics. In this manuscript, we describe the shelf-scale seasonal variability in inorganic carbon and air-sea CO2 fluxes over the main seasons (wet summer, early dry and late dry seasons) in the GBR.

Our large-scale dataset reveals that despite spatial-temporal variations, the GBR as a whole is a net source of CO2 to the atmosphere, with calculated air–sea fluxes varying between −6.19 and 12.17 mmol m−2 d−1 (average ± standard error: 1.44 ± 0.15 mmol m−2 d−1), with the strongest release of CO2occurring during the wet season. The release of CO2 to the atmosphere is likely controlled by mixing of Coral Sea surface water, typically oversaturated in CO2, with the warm shelf waters of the GBR. This leads to oversaturation of the GBR system relative to the atmosphere and a consequent net CO2 release.

Vulnerability of the marine ecosystem to climate change impacts in the Arabian Gulf—an urgent need for more research

Ben-Hasan A, Christensen V. Vulnerability of the marine ecosystem to climate change impacts in the Arabian Gulf—an urgent need for more research. Global Ecology and Conservation [Internet]. 2019 ;17:e00556. Available from: https://www.sciencedirect.com/science/article/pii/S2351989418303408
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Climate change, represented by ever-rising ocean temperatures, is a mounting threat to the marine ecosystem and its services. This is most evident in the longitudinal and depth-related migrations of the ectothermic species. Although the impacts of climate change on the marine ecosystem of the Arabian Gulf are expected to be exacerbated—owing to its semi-enclosed basin that limits species range shift, extreme environmental conditions, overfishing, and pollution—very few studies have been carried out to evaluate such impacts. Here, we conduct a systematic review of literature over the period 1950–2018 to assess the status of knowledge about climate change impacts on the Arabian Gulf's marine ecosystem and fisheries resources. We found that this region suffers a significant research gap in this critical subject, with only a handful of studies that explicitly addresses the effects of climate change. Our finding raises an urgent need for initiating long-term monitoring programs, along with establishing effective transboundary institutions to advance the current knowledge in climate change.

Movement behaviour of fish, harvesting-induced habitat degradation and the optimal size of marine reserves

Alqawasmeh Y, Lutscher F. Movement behaviour of fish, harvesting-induced habitat degradation and the optimal size of marine reserves. Theoretical Ecology [Internet]. 2019 . Available from: https://link.springer.com/article/10.1007%2Fs12080-019-0411-x
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Many models have assessed how marine reserves protect fish populations and—under certain conditions—simultaneously increase yield. Only recently have models considered the effects of fishing-induced habitat damage by assuming reduced population growth in fishing areas. Even though it is understood that fish movement patterns affect the functioning and design of marine reserves, fishing-induced changes in movement patterns, as a response to decreased habitat quality, have not been studied in this context. Our work explores how harvesting-induced movement behaviour of fish can affect optimal yield and size of a marine reserve. Our model is based on reaction-diffusion equations and recent advances in their application to strongly heterogeneous environments with sharp transitions in environmental conditions. We model movement behaviour in response to harvesting and habitat destruction via increased diffusion rates and increased preference for protected areas, and implement reduced reproduction as an effect of habitat degradation. We find an alternative mechanistic explanation for the empirical observation that high fish mobility may not decrease fish density inside a reserve. We also find that movement-behavioural responses of fish to harvesting can decrease the economic value of protected areas and increase their conservation value. For maximum sustainable yield, we find that a low harvesting rate and small protected area are optimal when fish show a strong preference for protected areas as a response to fishing efforts. On the other hand, a high harvesting rate and a large protected area are optimal if fish respond to harvesting by a strong increase in movement rates in fishing areas.

Identifying species threatened with local extinction in tropical reef fisheries using historical reconstruction of species occurrence

Buckley SM, McClanahan TR, Morales EMQuintan, Mwakha V, Nyanapah J, Otwoma LM, Pandolfi JM. Identifying species threatened with local extinction in tropical reef fisheries using historical reconstruction of species occurrence Patterson HM. PLOS ONE [Internet]. 2019 ;14(2):e0211224. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0211224
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Identifying the species that are at risk of local extinction in highly diverse ecosystems is a big challenge for conservation science. Assessments of species status are costly and difficult to implement in developing countries with diverse ecosystems due to a lack of species-specific surveys, species-specific data, and other resources. Numerous techniques are devised to determine the threat status of species based on the availability of data and budgetary limits. On this basis, we developed a framework that compared occurrence data of historically exploited reef species in Kenya from existing disparate data sources. Occurrence data from archaeological remains (750-1500CE) was compared with occurrence data of these species catch assessments, and underwater surveys (1991-2014CE). This comparison indicated that only 67 species were exploited over a 750 year period, 750-1500CE, whereas 185 species were landed between 1995 and 2014CE. The first step of our framework identified 23 reef species as threatened with local extinction. The second step of the framework further evaluated the possibility of local extinction with Bayesian extinction analyses using occurrence data from naturalists’ species list with the existing occurrence data sources. The Bayesian extinction analysis reduced the number of reef species threatened with local extinction from 23 to 15. We compared our findings with three methods used for assessing extinction risk. Commonly used extinction risk methods varied in their ability to identify reef species that we identified as threatened with local extinction by our comparative and Bayesian method. For example, 12 of the 15 threatened species that we identified using our framework were listed as either least concern, unevaluated, or data deficient in the International Union for the Conservation of Nature red list. Piscivores and macro-invertivores were the only functional groups found to be locally extinct. Comparing occurrence data from disparate sources revealed a large number of historically exploited reef species that are possibly locally extinct. Our framework addressed biases such as uncertainty in priors, sightings and survey effort, when estimating the probability of local extinction. Our inexpensive method showed the value and potential for disparate data to fill knowledge gaps that exist in species extinction assessments.

Challenges to Harmonize Sustainable Fishery with Environmental Conservation in the Coastal Ecosystems Under Oligotrophication

Hori M, Hirota M, Lagarde F, Vaz S, Hamaguchi M, Tezuka N, Makino M, Kimura R. Challenges to Harmonize Sustainable Fishery with Environmental Conservation in the Coastal Ecosystems Under Oligotrophication. In: Komatsu T, Ceccaldi H-J, Yoshida J, Prouzet P, Hénocque Cham: Springer International Publishing; 2019. pp. 277 - 284. Available from: https://link.springer.com/chapter/10.1007/978-3-030-00138-4_21
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $29.95
Type: Book Chapter

Coastal environments of the world have been exposed to eutrophication for several decades. Recently the quality of coastal waters has been gradually and successfully improved, however the improvement has caused another issue in ecoastal ecosystem services, called oligotrophication. Local stakefolders have suggested that oligotrophication reduces pelagic productivity and moreover fishery production in coastal ecosystems, while oligotrophication with high transparency has recovered benthic macrophyte vegetation which have been depressed by phytoplankton derived from eutrophication. In particular, seagrass species is one of the most important coastal vegetation for climate change mitigation and adaptation, which has been welcomed by another stakefolders. Therefore, harmonizing coastal fishery with environmental conservation is now essential for the sustainable use of ecosystem services. Here, we just started some practice in field based on the interdisciplinary approach including ecological actions, socio-economical actions and moreover psychological actions to find the integrative coastal management maximizing well-beings of various stakefolders, which is essential to harmonize environmental conservation with sustainable fishery and aquaculture. Now we are focusing on the interaction between oyster aquaculture and seagrass vegetation as an ecological action.

Climate Indices, Water Temperature, and Fishing Predict Broad Scale Variation in Fishes on Temperate Reefs

Geraldi NRobert, Kellison GT, Bacheler NM. Climate Indices, Water Temperature, and Fishing Predict Broad Scale Variation in Fishes on Temperate Reefs. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00030/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Determining what abiotic and biotic factors affect the diversity and abundance of species through time and space is a basic goal of ecology and an integral step in predicting current and future distributions. Given the pervasive effect of humans worldwide, including anthropogenic factors when quantifying community dynamics is needed to understand discrete and emergent effects of humans on marine ecosystems, especially systems with economically important species. However, there are limited studies that combine a large-scale ecological survey with multiple natural and anthropogenic factors to determine the drivers of community dynamics of temperate reef systems. We combined data from a 24-year fish survey on temperate reefs along the Southeast United States coast with information on recreational and commercial fisheries landings, surface and bottom temperature, habitat characteristics, and climate indices to determine what factors may alter the community structure of fishes within this large marine ecosystem. We found that both abundance and richness of temperate reef fishes declined from 1990 to 2013. Climate indices and local temperature explained the greatest variation, and recreational fishing explained slightly more variation compared to commercial fishing in the temperate reef fish community over a multi-decadal scale. When including habitat characteristics in a 3 year analysis, depth, and local temperature explained the greatest variation in fish assemblage, while the influence of habitat was comparatively minimal. Finally, the interaction between predictor variables and fish traits indicated that bigger and longer-lived fishes were positively correlated with depth and winter temperature. Our findings suggest that lesser-studied anthropogenic impacts, such as recreational fishing, may influence communities throughout large ecosystems as much as other well-studied impacts such as climate change and commercial fishing. In addition, climate indices should be considered when assessing changes, natural or anthropogenic, to fish communities.

A Carding System as an Approach to Increasing the Economic Risk of Engaging in IUU Fishing?

U. Sumaila R. A Carding System as an Approach to Increasing the Economic Risk of Engaging in IUU Fishing?. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00034/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The European Union (EU) instituted a carding system via its European Commission Regulation (EC) No. 1005/2008 with the goal of incentivizing fish and fish products (fish) exporting countries to the Union to take action to reduce IUU fishing in their waters. This regulation stipulates that the EU will issue warnings, known as a “yellow card,” to countries that perform poorly in the effort to end IUU fishing in their waters. Failure to curb IUU fishing will result in a ban in the export of fish to the EU via the issuance of a red card. Here, I ask the following questions: what is the economic risk of being red carded by the EU? Is the economic risk big enough to significantly reduce IUU fishing in a targeted country’s waters? Would the risk be broad enough to result in a significant reduction in IUU fishing globally? What if the two other leading fish importing countries, i.e., the United States and Japan, also institute a similar carding system as the EU? To address these questions, I develop and compute an economic risk index for the carding system. This study suggests that the impact of an EU only IUU carding system could be significant for some targeted countries but its effect globally, with respect to reducing IUU fishing, would be minimal. However, I find that the economic risk to fish exporting countries would increase significantly if the United States and Japan also instituted similar carding systems, which would in turn help to reduce IUU fishing worldwide. This contribution shows that an IUU carding system could contribute significantly to the elimination of IUU fishing provided a critical mass of top fish importing countries participate in such a system.

Gulf of Mexico estuarine blue carbon stock, extent and flux: Mangroves, marshes, and seagrasses: A North American hotspot

Thorhaug AL, Poulos HM, López-Portillo J, Barr J, Lara-Domínguez ALaura, Ku TC, Berlyn GP. Gulf of Mexico estuarine blue carbon stock, extent and flux: Mangroves, marshes, and seagrasses: A North American hotspot. Science of The Total Environment [Internet]. 2019 ;653:1253 - 1261. Available from: https://www.sciencedirect.com/science/article/pii/S0048969718338816
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $41.95
Type: Journal Article

The Gulf of Mexico blue carbon habitats (mangroves, seagrass, and salt marshes) form an important North American blue carbon hot spot. These habitats cover 2,161,446 ha and grow profusely in estuaries that occupy 38,000 km2 to store substantial sedimentary organic carbon of 480.48 Tg C. New investigations around GoM for Mexican mangroves, Louisiana salt marshes and seagrasses motivated our integration of buried organic carbon to elucidate a new estimate of GoM blue carbon stocks. Factors creating this include: large GoM watersheds enriching carbon slowly flowing through shallow estuarine habitats with long residence times; fewer SE Mexican hurricanes allowing enhanced carbon storage; mangrove carbon productivity enhanced by warm southern basin winter temperatures; large Preservation reserves amongst high anthropogenic development. The dominant total GoM mangrove blue carbon stock 196.88 Tg from total mangrove extent 650,482 ha is highlighted from new Mexican data. Mexican mangrove organic carbon stock is 112.74 Tg (1st sediment meter) plus USA 84.14 Tg. Mexican mangroves vary greatly in storage, total carbon depositional depths and in sediment age (to 3500 y). We report Mexican mangrove's conservative storage fraction for the normally-compared top meter, whereas the full storage depth estimates ranging above 366.78 Tg (high productivity in very deep sediment along the central Veracruz/Tabasco coast) are not reflected in our reported estimates. Seagrasses stock of 184.1 Tg C organic is derived from 972,327 ha areal extent (in 1st meter). The Louisiana marshes form the heart of GoM salt marsh carbon storage 99.5 Tg (in 1st meter), followed by lesser stocks in Florida, Texas, finally Mexico derived from salt marsh extent totaling 650,482 ha. Constraints on the partial estuarine fluxes given for this new data are discussed as well as widespread anthropogenic destruction of the GoM blue carbon. A new North American comparison of our GoM blue carbon stocks versus Atlantic coastal blue carbon stock estimates is presented.

Measures and Approaches in Trait-Based Phytoplankton Community Ecology – From Freshwater to Marine Ecosystems

Weithoff G, Beisner BE. Measures and Approaches in Trait-Based Phytoplankton Community Ecology – From Freshwater to Marine Ecosystems. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00040/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Trait-based approaches to investigate (short- and long-term) phytoplankton dynamics and community assembly have become increasingly popular in freshwater and marine science. Although the nature of the pelagic habitat and the main phytoplankton taxa and ecology are relatively similar in both marine and freshwater systems, the lines of research have evolved, at least in part, separately. We compare and contrast the approaches adopted in marine and freshwater ecosystems with respect to phytoplankton functional traits. We note differences in study goals relating to functional trait use that assess community assembly and those that relate to ecosystem processes and biogeochemical cycling that affect the type of characteristics assigned as traits to phytoplankton taxa. Specific phytoplankton traits relevant for ecological function are examined in relation to herbivory, amplitude of environmental change and spatial and temporal scales of study. Major differences are identified, including the shorter time scale for regular environmental change in freshwater ecosystems compared to that in the open oceans as well as the type of sampling done by researchers based on site-accessibility. Overall, we encourage researchers to better motivate why they apply trait-based analyses to their studies and to make use of process-driven approaches, which are more common in marine studies. We further propose fully comparative trait studies conducted along the habitat gradient spanning freshwater to brackish to marine systems, or along geographic gradients. Such studies will benefit from the combined strength of both fields.

Managing the environment in a pinch: red swamp crayfish tells a cautionary tale of ecosystem based management in northeastern Italy

Gavioli A, Milardi M, Lanzoni M, Mantovani S, Aschonitis V, Soana E, Fano EAnna, Castaldelli G. Managing the environment in a pinch: red swamp crayfish tells a cautionary tale of ecosystem based management in northeastern Italy. Ecological Engineering [Internet]. 2018 ;120:546 - 553. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0925857418302519
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Farmlands are globally widespread and their management should consider both human and environmental needs. In fact, these man-made ecosystems provide subsistence to the human population but are also habitats for plant and animal communities. The worldwide increase of exotic species has affected native communities, but also human activities or health. We used an exploited farmland in northern Italy, where many exotics are present, as a test case for identifying restoration measures based on an ecosystem approach. In particular, we focused on red swap crayfish for its ecosystem engineering capabilities, and examined the factors affecting its invasion success in order to attempt the definition of management strategies. We used multivariate and regression analysis to evaluate the relationships between the red swamp crayfish, water quality, macrophytes abundance, watercourse hydraulics and the fish community. All analyses indicated that red swamp crayfish was less likely to establish in large, deeper and fast flowing waterways, especially when these are deprived of vegetation and less eutrophicated. Based on our results, fish predation was also a significant factor in limiting red swamp crayfish abundance. We thus concluded that a different hydraulic management, which leaves more water in irrigation canals throughout the winter, could be possibly used to slow down or even reverse the invasion process.

Deep-Sea Biofilms, Historic Shipwreck Preservation and the Deepwater Horizon Spill

Mugge RL, Brock ML, Salerno JL, Damour M, Church RA, Lee JS, Hamdan LJ. Deep-Sea Biofilms, Historic Shipwreck Preservation and the Deepwater Horizon Spill. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00048/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Exposure to oil from the Deepwater Horizon spill may have lasting impacts on preservation of historic shipwrecks in the Gulf of Mexico. Submerged steel structures, including shipwrecks, serve as artificial reefs and become hotspots of biodiversity in the deep sea. Marine biofilms on submerged structures support settlement of micro- and macro-biota and may enhance and protect against corrosion. Disruptions in the local environment, including oil spills, may impact the role that biofilms play in reef preservation. To determine how the Deepwater Horizon spill potentially impacted shipwreck biofilms and the functional roles of the biofilm microbiome, experiments containing carbon steels disks (CSDs) were placed at five historic shipwreck sites located within, and external to the benthic footprint of the Deepwater Horizon spill. The CSDs were incubated for 16 weeks to enable colonization by biofilm-forming microorganisms and to provide time for in situ corrosion to occur. Biofilms from the CSDs, as well as sediment and water microbiomes, were collected and analyzed by 16S rRNA amplicon gene sequencing to describe community composition and determine the source of taxa colonizing biofilms. Biofilm metagenomes were sequenced to compare differential gene abundances at spill-impacted and reference sites. Biofilms were dominated by Zeta-, Alpha-, Epsilon-, and Gamma-proteobacteria. Sequences affiliated with the Mariprofundus and Sulfurimonas genera were prolific, and Roseobacter, and Colwellia genera were also abundant. Analysis of 16S rRNA sequences from sediment, water, and biofilms revealed sediment to be the main known source of taxa to biofilms at impacted sites. Differential gene abundance analysis revealed the two-component response regulator CreC, a gene involved in environmental stress response, to be elevated at reference sites compared to impacted sites within the spill plume fallout area on the seafloor. Genes for chemotaxis, motility, and alcohol dehydrogenases were differentially abundant at reference vs. impacted sites. Metal loss on CSDs was elevated at sites within the spill fallout plume. Time series images reveal that metal loss at a heavily impacted site, the German Submarine U-166, has accelerated since the spill in 2010. This study provides evidence that spill residues on the seafloor may impact biofilm communities and the preservation of historic steel shipwrecks.

Filling the Data Gap – A Pressing Need for Advancing MPA Sustainable Finance

Bohorquez JJ, Dvarskas A, Pikitch EK. Filling the Data Gap – A Pressing Need for Advancing MPA Sustainable Finance. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00045/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Reaching protected area (PA) coverage goals is challenged by a lack of sufficient financial resources. This funding gap is particularly pervasive for marine protected areas (MPAs). It has been suggested that marine conservationists examine examples from terrestrial protected areas (TPAs) for potential solutions to better fund MPAs. However, the funding needs for MPAs and TPAs have not been directly compared, and there is risk of management failures if any such differences are not properly considered when designing MPA financial strategies. We perform an in-depth literature review to investigate differences in distribution of costs incurred by MPAs and TPAs across three primary categories; establishment, operational, and opportunity costs. We use our findings to conduct a snapshot quantitative comparison, which we complement with theoretical support to provide preliminary insight into differences between MPA and TPA costs, and how these may influence financial strategies most appropriate for each type of PA. Our research suggests that TPA costs, and thereby funding requirements, are greater for the time period leading up to and including the implementation phase, whereas MPAs have higher financial requirements for meeting long-term annual operational costs. This may be primarily due to the prevalence of private property rights for terrestrial regions, which are less frequently in place for ocean areas, as well as logistical requirements for enforcement and monitoring in a marine environment. To cement these suggestions in greater analytical certainty, we call for more thorough and standardized PA cost reporting at all stages, especially for MPAs and PAs in developing countries. The quantity and quality of such data presently limits research in PA sustainable finance, and will need to be remedied to advance the field in future years.

Do Our Ocean Policies Make Any Difference in the Wellbeing of Coastal Communities?

Hénocque Y. Do Our Ocean Policies Make Any Difference in the Wellbeing of Coastal Communities?. In: Komatsu T, Ceccaldi H-J, Yoshida J, Prouzet P, Hénocque Oceanography Challenges to Future Earth. Oceanography Challenges to Future Earth. Cham: Springer International Publishing; 2019. pp. 325 - 338. Available from: https://link.springer.com/chapter/10.1007/978-3-030-00138-4_26
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $29.95
Type: Book Chapter

Like many other countries, France and Japan now have their own ocean policy, though at different stage of development and in quite different context. On the European side, buzz words like ‘Blue Growth’, ‘Maritime Spatial Planning’, and others, are on the forefront and could make us feel that ocean policies are primarily focused beyond the coast, in offshore waters and their corresponding human activities, somewhat leaving coastal communities in the back seat. Through case studies, we will try to show that ocean policies should be coast-to-coast, across oceans, regional seas, or local well delineated water body, never forgetting that, beyond ‘Blue growth’, we should be heading towards a ‘Blue society’.

Strengths and limitations of before–after–control–impact analysis for testing the effects of marine protected areas on managed populations

Kerr LA, Kritzer JP, Cadrin SX. Strengths and limitations of before–after–control–impact analysis for testing the effects of marine protected areas on managed populations. ICES Journal of Marine Science [Internet]. 2019 . Available from: https://academic.oup.com/icesjms/advance-article-abstract/doi/10.1093/icesjms/fsz014/5345117
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $45.00
Type: Journal Article

Marine protected areas (MPAs) are a common management strategy for conserving marine resources, but it can be challenging to evaluate their effectiveness for meeting management objectives. Measuring the effectiveness of MPAs is particularly challenging in dynamic and changing environments where other management approaches are simultaneously implemented. Before–after–control–impact (BACI) analysis is a tool that offers a simple and robust design for evaluating complex effects. However, design and interpretation of a BACI analysis is not always straightforward. The goal of this study was to explore the potential for BACI to evaluate MPA performance in a system simultaneously impacted by other management measures and environmental change. We develop a typology of interpretations of BACI results based on the main and interaction effects of the model, categorized by the extent to which dynamics inside and outside of the MPA are independent. Furthermore, we examine how decisions about the spatial and temporal design of the study, and the focal species and response variables, can determine which outcomes from within the typology are evident through BACI applications to New England groundfish area closures. We identify strengths and limitations of the BACI approach and demonstrate that BACI is a valuable but imperfect tool for evaluating MPAs.

Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands

Hemes KS, Chamberlain SD, Eichelmann E, Anthony T, Valach A, Kasak K, Szutu D, Verfaillie J, Silver WL, Baldocchi DD. Assessing the carbon and climate benefit of restoring degraded agricultural peat soils to managed wetlands. Agricultural and Forest Meteorology [Internet]. 2019 ;268:202 - 214. Available from: https://www.sciencedirect.com/science/article/pii/S0168192319300176
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $19.95
Type: Journal Article

Restoring degraded peat soils presents an attractive, but largely untested, climate change mitigation approach. Drained peat soils used for agriculture can be large greenhouse gas sources. By restoring subsided peat soils to managed, impounded wetlands, significant agricultural emissions are avoided, and soil carbon can be sequestered and protected. Here, we synthesize 36 site-years of continuous carbon dioxide and methane flux data from a mesonetwork of eddy covariance towers in the Sacramento-San Joaquin Delta in California, USA to compute carbon and greenhouse gas budgets for drained agricultural land uses and compare these to restored deltaic wetlands. We found that restored wetlands effectively sequestered carbon and halted soil carbon loss associated with drained agricultural land uses. Depending on the age and disturbance regime of the restored wetland, many land use conversions from agriculture to restored wetland resulted in emission reductions over a 100-year timescale. With a simple model of radiative forcing and atmospheric lifetimes, we showed that restored wetlands do not begin to accrue greenhouse gas benefits until nearly a half century, and become net sinks from the atmosphere after a century. Due to substantial interannual variability and uncertainty about the multi-decadal successional trajectory of managed, restored wetlands, ongoing ecosystem flux measurements are critical for understanding the long-term impacts of wetland restoration for climate change mitigation.

Pages

Subscribe to OpenChannels Literature Library