Literature Library

Currently indexing 8100 titles

Understanding Regional and Seasonal Variability Is Key to Gaining a Pan-Arctic Perspective on Arctic Ocean Freshening

Brown KA, Holding JM, Carmack EC. Understanding Regional and Seasonal Variability Is Key to Gaining a Pan-Arctic Perspective on Arctic Ocean Freshening. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00606/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Arctic marine system is large and heterogeneous, harsh and remote, and now changing very rapidly, all of which contribute to our current inadequate understanding of its basic structures and functions. In particular, many key processes within and external to the Arctic Ocean are intrinsically linked to its freshwater system, which itself is undergoing rapid and uncertain change. The role of the freshwater system (delivery, disposition, storage, and export) in the Arctic Ocean has recently received significant attention; however, due to the fact that few studies are able to cover all regions and seasons equally, we still lack an accessible, unified pan-Arctic representation generalizing the impacts of freshwater on the upper Arctic Ocean where many biological and geochemical interactions occur. This work seeks to distill our current understanding of the Arctic freshwater system, and its impacts, into conceptual diagrams which we use as a basis to speculate on the impact of future changes. We conclude that an understanding of regional and seasonal variability is required in order to gain a pan-Arctic perspective on the physical-geochemical-biological state of the upper Arctic Ocean. As an example of regionality, enhanced stratification due to freshening will be more important in the Pacific influenced Amerasian Basin, which stores the bulk of the freshwater burden, while the Atlantic influenced Eurasian Basin will experience more consequences related to increased heating from advective sources. River influenced coastal regions will experience a mosaic of these and other biogeochemical effects, whereas glacial fjords may follow their own unique trajectories due to the loss of upwelling mechanisms at glacial fronts. As an example of seasonality, the continued modulation of the sea ice freeze-melt cycle has increased the seasonal freshwater burden in the deep basins dramatically as the system progresses toward ice-free summer conditions, but will eventually reverse, reducing the seasonal flux of freshwater by more than half in a future, perennially ice-free ocean. It is our goal that these conceptualizations, based on the current state-of-the-art, will drive hypothesis-based research to investigate the physical-biogeochemical response to a changing freshwater cycle in a future Arctic Ocean with greatly reduced ice cover.

Operating Cabled Underwater Observatories in Rough Shelf-Sea Environments: A Technological Challenge

Fischer P, Brix H, Baschek B, Kraberg A, Brand M, Cisewski B, Riethmüller R, Breitbach G, Möller KOve, Gattuso J-P, et al. Operating Cabled Underwater Observatories in Rough Shelf-Sea Environments: A Technological Challenge. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00551/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Cabled coastal observatories are often seen as future-oriented marine technology that enables science to conduct observational and experimental studies under water year-round, independent of physical accessibility to the target area. Additionally, the availability of (unrestricted) electricity and an Internet connection under water allows the operation of complex experimental setups and sensor systems for longer periods of time, thus creating a kind of laboratory beneath the water. After successful operation for several decades in the terrestrial and atmospheric research field, remote controlled observatory technology finally also enables marine scientists to take advantage of the rapidly developing communication technology. The continuous operation of two cabled observatories in the southern North Sea and off the Svalbard coast since 2012 shows that even highly complex sensor systems, such as stereo-optical cameras, video plankton recorders or systems for measuring the marine carbonate system, can be successfully operated remotely year-round facilitating continuous scientific access to areas that are difficult to reach, such as the polar seas or the North Sea. Experience also shows, however, that the challenges of operating a cabled coastal observatory go far beyond the provision of electricity and network connection under water. In this manuscript, the essential developmental stages of the “COSYNA Shallow Water Underwater Node” system are presented, and the difficulties and solutions that have arisen in the course of operation since 2012 are addressed with regard to technical, organizational and scientific aspects.

Site-fidelity and spatial movements of western North Pacific gray whales on their summer range off Sakhalin, Russia

Bröker KCA, Gailey G, Tyurneva OYu., Yakovlev YM, Sychenko O, Dupont JM, Vertyankin VV, Shevtsov E, Drozdov KA. Site-fidelity and spatial movements of western North Pacific gray whales on their summer range off Sakhalin, Russia Griffen BD. PLOS ONE [Internet]. 2020 ;15(8):e0236649. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236649
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Western North-Pacific (WNP) gray whale feeding grounds are off the northeastern coast of Sakhalin Island, Russia and is comprised of a nearshore and offshore component that can be distinguished by both depth and location. Spatial movements of gray whales within their foraging grounds were examined based on 13 years of opportunistic vessel and shore-based photo-identification surveys. Site fidelity was assessed by examining annual return and resighting rates. Lagged Identification Rates (LIR) analyses were conducted to estimate the residency and transitional movement patterns within the two components of their feeding grounds. In total 243 individuals were identified from 2002–2014, among these were 94 calves. The annual return rate over the period 2002–2014 was 72%, excluding 35 calves only seen one year. Approximately 20% of the individuals identified from 2002–2010 were seen every year after their initial sighting (including eight individuals that returned for 13 consecutive years). The majority (239) of the WNP whales were observed in the nearshore area while only half (122) were found in the deeper offshore area. Within a foraging season, there was a significantly higher probability of gray whales moving from the nearshore to the offshore area. No mother-calf pairs, calves or yearlings were observed in the offshore area, which was increasingly used by mature animals. The annual return rates, and population growth rates that are primarily a result of calf production with little evidence of immigration, suggest that this population is demographically self-contained and that both the nearshore and offshore Sakhalin feeding grounds are critically important areas for their summer annual foraging activities. The nearshore habitat is also important for mother-calf pairs, younger individuals, and recently weaned calves. Nearshore feeding could also be energetically less costly compared to foraging in the deeper offshore habitat and provide more protection from predators, such as killer whales.

Citizen science for predicting spatio-temporal patterns in seabird abundance during migration

Martín B, Onrubia A, González-Arias J, Vicente-Vírseda JA. Citizen science for predicting spatio-temporal patterns in seabird abundance during migration Paiva VHugo Rodri. PLOS ONE [Internet]. 2020 ;15(8):e0236631. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236631
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Pelagic seabirds are elusive species which are difficult to observe, thus determining their spatial distribution during the migration period is a difficult task. Here we undertook the first long-term study on the distribution of migrating shearwaters from data gathered within the framework of citizen science projects. Specifically, we collected daily abundance (only abundance given presence) of Balearic shearwaters from 2005 to 2017 from the online databases Trektellen and eBird. We applied machine-learning techniques, specifically Random Forest regression models, to predict shearwater abundance during migration using 15 environmental predictors. We built separated models for pre-breeding and post-breeding migration. When evaluated for the total data sample, the models explained more than 52% of the variation in shearwater abundance. The models also showed good ability to predict shearwater distributions for both migration periods (correlation between observed and predicted abundance was about 70%). However, relative variable importance and variation among the models built with different training data subsamples differed between migration periods. Our results showed that data gathered in citizen science initiatives together with recently available high-resolution satellite imagery, can be successfully applied to describe the migratory spatio-temporal patterns of seabird species accurately. We show that a predictive modelling approach may offer a powerful and cost-effective tool for the long-term monitoring of the migratory patterns in sensitive marine species, as well as to identify at sea areas relevant for their protection. Modelling approaches can also be essential tools to detect the impacts of climate and other global changes in this and other species within the range of the training data.

Effects of future climate on coral-coral competition

Johnston NK, Campbell JE, Paul VJ, Hay ME. Effects of future climate on coral-coral competition Melzner F. PLOS ONE [Internet]. 2020 ;15(8):e0235465. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235465
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

As carbon dioxide (CO2) levels increase, coral reefs and other marine systems will be affected by the joint stressors of ocean acidification (OA) and warming. The effects of these two stressors on coral physiology are relatively well studied, but their impact on biotic interactions between corals are poorly understood. While coral-coral interactions are less common on modern reefs, it is important to document the nature of these interactions to better inform restoration strategies in the face of climate change. Using a mesocosm study, we evaluated whether the combined effects of ocean acidification and warming alter the competitive interactions between the common coral Porites astreoides and two other mounding corals (Montastraea cavernosa or Orbicella faveolata) common in the Caribbean. After 7 days of direct contact, Pastreoides suppressed the photosynthetic potential of Mcavernosa by 100% in areas of contact under both present (~28.5°C and ~400 μatm pCO2) and predicted future (~30.0°C and ~1000 μatm pCO2) conditions. In contrast, under present conditions Mcavernosa reduced the photosynthetic potential of Pastreoides by only 38% in areas of contact, while under future conditions reduction was 100%. A similar pattern occurred between Pastreoides and Ofaveolata at day 7 post contact, but by day 14, each coral had reduced the photosynthetic potential of the other by 100% at the point of contact, and Ofaveolata was generating larger lesions on Pastreoides than the reverse. In the absence of competition, OA and warming did not affect the photosynthetic potential of any coral. These results suggest that OA and warming can alter the severity of initial coral-coral interactions, with potential cascading effects due to corals serving as foundation species on coral reefs.

Consumer-based actions to reduce plastic pollution in rivers: A multi-criteria decision analysis approach

Marazzi L, Loiselle S, Anderson LG, Rocliffe S, Winton DJ. Consumer-based actions to reduce plastic pollution in rivers: A multi-criteria decision analysis approach Aschonitis VG. PLOS ONE [Internet]. 2020 ;15(8):e0236410. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236410
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The use and management of single use plastics is a major area of concern for the public, regulatory and business worlds. Focusing on the most commonly occurring consumer plastic items present in European freshwater environments, we identified and evaluated consumer-based actions with respect to their direct or indirect potential to reduce macroplastic pollution in freshwater environments. As the main end users of these items, concerned consumers are faced with a bewildering array of choices to reduce their plastics footprint, notably through recycling or using reusable items. Using a Multi-Criteria Decision Analysis approach, we explored the effectiveness of 27 plastic reduction actions with respect to their feasibility, economic impacts, environmental impacts, unintended social/environmental impacts, potential scale of change and evidence of impact. The top ranked consumer-based actions were identified as: using wooden or reusable cutlery; switching to reusable water bottles; using wooden or reusable stirrers; using plastic free cotton-buds; and using refill detergent/ shampoo bottles. We examined the feasibility of top-ranked actions using a SWOT analysis (Strengths, Weaknesses, Opportunities and Threats) to explore the complexities inherent in their implementation for consumers, businesses, and government to reduce the presence of plastic in the environment.

Future Distribution of Suitable Habitat for Pelagic Sharks in Australia Under Climate Change Models

Birkmanis CA, Freer JJ, Simmons LW, Partridge JC, Sequeira AMM. Future Distribution of Suitable Habitat for Pelagic Sharks in Australia Under Climate Change Models. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00570/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Global oceans are absorbing over 90% of the heat trapped in our atmosphere due to accumulated anthropogenic greenhouse gases, resulting in increasing ocean temperatures. Such changes may influence marine ectotherms, such as sharks, as their body temperature concurrently increases toward their upper thermal limits. Sharks are high trophic level predators that play a key role in the regulation of ecosystem structure and health. Because many sharks are already threatened, it is especially important to understand the impact of climate change on these species. We used shark occurrence records collected by commercial fisheries within the Australian continental Exclusive Economic Zone (EEZ) to predict changes in future (2050–2099) relative to current (1956–2005) habitat suitability for pelagic sharks based on an ensemble of climate models and emission scenarios. Our predictive models indicate that future sea temperatures are likely to shift the location of suitable shark habitat within the Australian EEZ. On average, suitable habitat is predicted to decrease within the EEZ for requiem and increase for mackerel sharks, however, the direction and severity of change was highly influenced by the choice of climate model. Our results indicate the need to consider climate change scenarios as part of future shark management and suggest that more broad-scale studies are needed for these pelagic species.

Species and Functional Diversity of Deep-Sea Nematodes in a High Energy Submarine Canyon

Liao J-X, Wei C-L, Yasuhara M. Species and Functional Diversity of Deep-Sea Nematodes in a High Energy Submarine Canyon. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00591/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Gaoping Submarine Canyon (GPSC) off southwestern Taiwan is a high energy canyon connected to a small mountain river with extremely high sediment load (∼10 kt km–2 y–1). Due to heavy seasonal precipitation (>3,000 mm y–1) and high tectonic activity in the region, the GPSC is known for active sediment transport processes and associated submarine geohazards (e.g., submarine cable breaks). More importantly, strong internal tides have been recorded in the GPSC to drive head-ward, bottom-intensified currents, which result in sediment erosion and resuspension in response to the tidal cycles. To understand the effects of extreme physical conditions on marine nematodes, we sampled the surface sediments along the thalweg of upper GPSC and adjacent slope (200–1,100 m) using a multicorer in the summer and fall of 2015. We found that the nematode species, functional, trophic diversity and maturity dropped significantly in the GPSC as compared with slope communities, but the nematode abundances were not affected by the adverse conditions in the canyon. The non-selective deposit-feeding, fast colonizing nematodes (e.g., SabatieriaDaptonemaAxonolaimus, and Metadesmolaimus) dominated the canyon seafloor. In contrast, other species of non-selective deposit feeders (Setosabatieria and Elzalia), epigrowth feeders (Craspodema), omnivores/predators (Paramesacanthion), and other species constituted the diverse nematode assemblages on the slope. We found that the strong bottom currents in the GPSC may depress the local nematode diversity by removing the organic-rich, fine-grained sediments; therefore, only the resilient or fast recovering nematode species could survive and prevail. The high species turnover with depth and between the canyon and slope habitats demonstrates that strong environmental filtering processes were the primary mechanism shaping the nematode community assembly off SW Taiwan. Between the canyon and slope, a considerable contribution of nestedness pattern also indicates some degree of local extinction and dispersal limitation in the dynamic GPSC.

Recent Changes in Deep Ventilation of the Mediterranean Sea; Evidence From Long-Term Transient Tracer Observations

Li P, Tanhua T. Recent Changes in Deep Ventilation of the Mediterranean Sea; Evidence From Long-Term Transient Tracer Observations. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00594/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Mediterranean Sea is a small region of the global ocean but with a very active overturning circulation that allows surface perturbations to be transported to the interior ocean. Understanding of ventilation is important for understanding and predicting climate change and its impact on ocean ecosystems. To quantify changes of deep ventilation, we investigated the spatiotemporal variability of transient tracers (i.e., CFC-12 and SF6) observations combined with temporal evolution of hydrographic and oxygen observations in the Mediterranean Sea from 13 cruises conducted during 1987–2018, with emphasize on the update from 2011 to 2018. Spatially, both the Eastern and Western Mediterranean Deep Water (EMDW and WMDW) show a general west-to-east gradient of increasing salinity and potential temperature but decreasing oxygen and transient tracer concentrations. Temporally, stagnant and weak ventilation is found in most areas of the EMDW during the last decade despite the prevailing ventilation in the Adriatic Deep Water between 2011 and 2016, which could be a result of the weakened Adriatic source intensity. The EMDW has been a mixture of the older Southern Aegean Sea dense waters formed during the Eastern Mediterranean Transient (EMT) event, and the more recent ventilated deep-water of the Adriatic origin. In the western Mediterranean basin, we found uplifting of old WMDW being replaced by the new deep-water from the Western Mediterranean Transition (WMT) event and uplifting of the new WMDW toward the Alboran Sea. The temporal variability revealed enhanced ventilation after the WMT event but slightly weakened ventilation after 2016, which could be a result of combined influences from the eastern (for the weakened Adriatic source intensity) and western (for the weakened influence from the WMT event) Mediterranean Sea. Additionally, the Mediterranean Sea is characterized by a Tracer Minimum Zone (TMZ) at mid-depth of the water column attributed to the rapid deep ventilation so that the TMZ is the slowest ventilated layer. This zone of weak ventilation stretches across the whole Mediterranean Sea from the Levantine basin into the western basin.

Current and Future Influence of Environmental Factors on Small Pelagic Fish Distributions in the Northwestern Mediterranean Sea

Pennino MGrazia, Coll M, Albo-Puigserver M, Fernández-Corredor E, Steenbeek J, Giráldez A, Gonzalez M, Esteban A, Bellido JM. Current and Future Influence of Environmental Factors on Small Pelagic Fish Distributions in the Northwestern Mediterranean Sea. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00622/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In the Northwestern Mediterranean Sea, the European sardine (Sardina pilchardus) and the European anchovy (Engraulis encrasicolus) are the most important small pelagic fish in terms of biomass and commercial interest. During the last years, these species have experimented changes in their abundance and biomass trends in the Northwestern Mediterranean Sea, in addition to changes in growth, reproduction and body condition. These species are particularly sensitive to environmental fluctuations with possible cascading effects as they play a key role in connecting the lower and upper trophic levels of marine food webs. It is therefore essential to understand the factors that most profoundly affect sardine and anchovy dynamics. This study used a two-step approach to understand how the environment influences the adult stages of these species in the Northwestern Mediterranean Sea. First, we explored the effects of environmental change over time using Random Forests and available datasets of species occurrence, abundance, biomass and landings. We then applied species distribution models to test the impact of the extreme pessimistic and optimistic Intergovernmental Panel on Climate Change (IPCC) pathway scenarios, and to identify possible climate refuges: areas where these species may be able to persist under future environmental change. Findings from the temporal modeling showed mixed effects between environmental variables and for anchovy and sardine datasets. Future pathway projections highlight that both anchovy and sardine will undergo a reduction in their spatial distributions due to future climate conditions. The future climate refuges are the waters around the Rhone River (France) and the Ebro River (Spain) for both species. This study also highlights important knowledge gaps in our understanding of the dynamics of small pelagic fish in the region, which is needed to progress towards an ecosystem approach to fisheries management.

Using GIS and stakeholder involvement to innovate marine mammal bycatch risk assessment in data-limited fisheries

Verutes GM, Johnson AF, Caillat M, Ponnampalam LS, Peter C, Vu L, Junchompoo C, Lewison RL, Hines EM. Using GIS and stakeholder involvement to innovate marine mammal bycatch risk assessment in data-limited fisheries. PLOS ONE [Internet]. 2020 ;15(8):e0237835. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237835
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Fisheries bycatch has been identified as the greatest threat to marine mammals worldwide. Characterizing the impacts of bycatch on marine mammals is challenging because it is difficult to both observe and quantify, particularly in small-scale fisheries where data on fishing effort and marine mammal abundance and distribution are often limited. The lack of risk frameworks that can integrate and visualize existing data have hindered the ability to describe and quantify bycatch risk. Here, we describe the design of a new geographic information systems tool built specifically for the analysis of bycatch in small-scale fisheries, called Bycatch Risk Assessment (ByRA). Using marine mammals in Malaysia and Vietnam as a test case, we applied ByRA to assess the risks posed to Irrawaddy dolphins (Orcaella brevirostris) and dugongs (Dugong dugon) by five small-scale fishing gear types (hook and line, nets, longlines, pots and traps, and trawls). ByRA leverages existing data on animal distributions, fisheries effort, and estimates of interaction rates by combining expert knowledge and spatial analyses of existing data to visualize and characterize bycatch risk. By identifying areas of bycatch concern while accounting for uncertainty using graphics, maps and summary tables, we demonstrate the importance of integrating available geospatial data in an accessible format that taps into local knowledge and can be corroborated by and communicated to stakeholders of data-limited fisheries. Our methodological approach aims to meet a critical need of fisheries managers: to identify emergent interaction patterns between fishing gears and marine mammals and support the development of management actions that can lead to sustainable fisheries and mitigate bycatch risk for species of conservation concern.

100 Opportunities for More Inclusive Ocean Research: Cross-Disciplinary Research Questions for Sustainable Ocean Governance and Management

Wisz MS, Satterthwaite EV, Fudge M, Fischer M, Polejack A, John MSt., Fletcher S, Rudd MA. 100 Opportunities for More Inclusive Ocean Research: Cross-Disciplinary Research Questions for Sustainable Ocean Governance and Management. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00576/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In order to inform decision making and policy, research to address sustainability challenges requires cross-disciplinary approaches that are co-created with a wide and inclusive diversity of disciplines and stakeholders. As the UN Decade of Ocean Science for Sustainable Development approaches, it is therefore timely to take stock of the global range of cross-disciplinary questions to inform the development of policies to restore and sustain ocean health. We synthesized questions from major science and policy horizon scanning exercises, identifying 89 questions with relevance for ocean policy and governance. We then scanned the broad ocean science literature to examine issues potentially missed in the horizon scans and supplemented the horizon scan outcome with 11 additional questions. This resulted in an unprioritized list of 100 general questions that would require a cross-disciplinary approach to inform policy. The questions fell into broad categories including: coastal and marine environmental change, managing ocean activities, governance for sustainable oceans, ocean value, and technological and socio-economic innovation. Each question can be customized by ecosystem, region, scale, and socio-political context, and is intended to inspire discussions of salient cross-disciplinary research directions to direct scientific research that will inform policies. Governance and management responses to these questions will best be informed by drawing upon a diversity of natural and social sciences, local and traditional knowledge, and engagement of different sectors and stakeholders.

Repeated Vessel Interactions and Climate- or Fishery-Driven Changes in Prey Density Limit Energy Acquisition by Foraging Blue Whales

Guilpin M, Lesage V, McQuinn I, Brosset P, Doniol-Valcroze T, Jeanniard-du-Dot T, Winkler G. Repeated Vessel Interactions and Climate- or Fishery-Driven Changes in Prey Density Limit Energy Acquisition by Foraging Blue Whales. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00626/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Blue whale survival and fitness are highly contingent on successful food intake during an intense feeding season. Factors affecting time spent at the surface or at depth in a prey patch are likely to alter foraging effort, net energy gain, and fitness. We specifically examined the energetic consequences of a demonstrated reduction in dive duration caused by vessel proximity, and of krill density reductions potentially resulting from krill exploitation or climate change. We estimated net energy gain over a simulated 10-h foraging bout under baseline conditions, and three scenarios, reflecting krill density reductions, vessel interactions of different amplitudes, and their combined effects. Generally, the magnitude of the effects increased with that of krill density reductions and duration of vessel proximity. They were also smaller when peak densities were more accessible, i.e., nearer to the surface. Effect size from a reduction in krill density on net energy gain were deemed small to moderate at 5% krill reduction, moderate to large at 10% reduction, and large at 25 and 50% reductions. Vessels reduced cumulated net energy gain by as much as 25% when in proximity for 3 of a 10-h daylight foraging period, and by up to 47–85% when continuously present for 10 h. The impacts of vessel proximity on net energy gain increased with their duration. They were more important when whales were precluded from reaching the most beneficial peak densities, and when these densities were located at deeper depths. When krill densities were decreased by 5% or more, disturbing foraging blue whales for 3 h could reduce their net energy gain by ≥30%. For this endangered western North Atlantic blue whale population, a decrease in net energy gain through an altered krill preyscape or repeated vessel interactions is of particular concern, as this species relies on a relatively short feeding season to accumulate energy reserves and to fuel reproduction. This study highlights the importance of distance limits during whale-watching operations to ensure efficient feeding, as well as the vulnerability of this specialist to fluctuations in krill densities.

At the Turn of the Tide: Space Use and Habitat Partitioning in Two Sympatric Shark Species Is Driven by Tidal Phase

Lea JSE, Humphries NE, Bortoluzzi J, Daly R, von Brandis RG, Patel E, Patel E, Clarke CR, Sims DW. At the Turn of the Tide: Space Use and Habitat Partitioning in Two Sympatric Shark Species Is Driven by Tidal Phase. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00624/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coexistence of ecologically similar species occupying the same geographic location (sympatry) poses questions regarding how their populations persist without leading to competitive exclusion. There is increasing evidence to show that micro-variations in habitat use may promote coexistence through minimizing direct competition for space and resources. We used two sympatric marine predators that show high fidelity to a small, remote coral atoll as a model to investigate how temporally dynamic partitioning of space use may promote coexistence. Using novel methods (difference network analysis and dynamic space occupancy analysis), we revealed that even though blacktip reef sharks Carcharhinus melanopterus and sicklefin lemon sharks Negaprion acutidens both show focused use of the same atoll habitats, the spatio-temporal dynamics of their use was partitioned such that they only shared the same microhabitats 26% of the time. Moreover, the degree of overlap was strongly influenced by the tidal cycle, peaking at ∼35% at higher tides as both species appear to target similar intertidal micro-habitats despite the increase in available space. Our work provides a rare example of how two marine predators with similar ecological roles and habitat preferences may coexist in the same place through dynamic segregation of habitat use in space and time, potentially reflecting adaptive behavioral traits for minimizing interactions. The strong influence of small tidal variation on species habitat use and partitioning also raises concerns over how atoll ecosystem dynamics may be influenced by sea level rises that could alter tidal dynamics.

Managing Bigeye Tuna in the Western and Central Pacific Ocean

Post V, Squires D. Managing Bigeye Tuna in the Western and Central Pacific Ocean. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00619/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Western and Central Pacific Fisheries Commission (WCPFC) is responsible for managing highly migratory species in the Western and Central Pacific Ocean (WCPO), and has been interested in managing bigeye tuna as stock assessments prior to 2017 indicated that the stock was experiencing overfishing. This paper provides some background on the primary fisheries catching bigeye tuna in the WCPO, describes the various policies within the conservation and management measures adopted by the WCPFC, discusses the effectiveness of such policies, and concludes with some suggestions for future policies for consideration.

Perceptions, Motivations and Practices for Indigenous Engagement in Marine Science in Australia

Hedge P, van Putten EIngrid, Hunter C, Fischer M. Perceptions, Motivations and Practices for Indigenous Engagement in Marine Science in Australia. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00522/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Australian science has evolved to include a number of initiatives designed to promote and guide ethical and culturally appropriate Indigenous participation and engagement. While interest and overall engagement between Indigenous people and marine scientists appears to have grown in the last decade there are also signs that some researchers may not be setting out to engage with Indigenous Australians on the right foot. This research seeks to move beyond anecdotal evidence about engagement of marine researchers with Indigenous Australians by gathering empirical information from the scientists’ perspective. Our survey of 128 respondents showed that 63% (n = 79) of respondents have engaged with Indigenous communities in some way throughout their career, however, most marine research projects have not included Indigenous engagement and when it occurs it is often shorter than 3 years in duration. Responses indicated that the majority of marine scientists see mutual benefits from engagement, do not avoid it and believe it will become more important in the future. We identify a number of challenges and opportunities for marine research institutions, marine researchers and Indigenous communities if positive aspirations for engagement are to be converted to respectful, long-term and mutually beneficial engagement.

Cashing in on Spinners: Revenue Estimates of Wild Dolphin-Swim Tourism in the Hawaiian Islands

Wiener C, Bejder L, Johnston D, Fawcett L, Wilkinson P. Cashing in on Spinners: Revenue Estimates of Wild Dolphin-Swim Tourism in the Hawaiian Islands. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00660/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Wild dolphin-swim tourism has grown in specific locations where Hawaiian spinner dolphins (Stenella longirostris) have known resting habitat. The increased growth in dolphin-swim businesses has created an industry in Hawaii that earns an estimated $102 million (USD) annually in 2013. Semi-structured interviews with business owners, market research, and boat-based observations provide a platform for estimating revenue generated from dolphin tourism in two popular locations, Waianae, Oahu and Kailua-Kona, Hawaii Island. A revenue analysis of dolphin-swim tourism is presented using a peak season and utilization rate model. These predictions offer an accountability exercise based on a series of assumptions regarding wild dolphin-swim demand and an annual estimate of the number of viewing participants and revenue earned. The results show that dolphin viewing companies are making a larger profit than dolphin-swim businesses by approximately $19 million (USD) per year, however, both avenues are generating large earnings. Sizable differences between businesses in Kona and Waianae are discussed. The average lifetime revenue generated by a dolphin in 2013 is estimated at $3,364,316 (USD) for Waianae and $1,608,882 (USD) for Kona, and is presented as a first step in scenario analysis for policy makers looking to implement management in the bays where tourism occurs. This study offers the first revenue estimates of spinner dolphin tourism in Hawaii, which can provide context for further discussion on the impact and economic role of the dolphin-swim industry in the state.

Green Turtle (Chelonia mydas) Nesting Underscores the Importance of Protected Areas in the Northwestern Gulf of Mexico

Shaver DJ, Frandsen HR, George JA, Gredzens C. Green Turtle (Chelonia mydas) Nesting Underscores the Importance of Protected Areas in the Northwestern Gulf of Mexico. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00673/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Knowledge of the spatial and temporal distribution of green sea turtle (Chelonia mydas) nesting is crucial for management of this species. Limited data exist on the nesting patterns of green turtles along the northwestern Gulf of Mexico (GoM) coast. From 1987 to 2019, 211 green turtle nesting activities were documented on the Texas coast, including 111 confirmed nests and 100 non-nesting emergences. Of the 111 nests, 99 were located on North Padre Island (97 at Padre Island National Seashore (PAIS), two north of PAIS) and 12 on South Padre Island (six within the Laguna Atascosa or Lower Rio Grande Valley National Wildlife Refuges (NWR), six outside of a NWR). Of the 100 non-nesting emergences, 75 were on North Padre Island (70 at PAIS, 5 north of PAIS), 21 on South Padre Island (nine within a NWR, 12 outside of a NWR), one on Boca Chica Beach, two on San Jose Island, and one on Mustang Island. Nearly all of the nests (92.8%) and most of the non-nesting emergences (79.0%) were on property protected by the United States Department of the Interior as PAIS or a NWR, and confirmed nest density was largest at PAIS, highlighting the importance of these federally protected lands as nesting habitat for this threatened species. Of the 111 located nests, eight were predated. Mean hatching success of the 103 non-predated nests was 77.4%, and 9,475 hatchlings were released from the predated and non-predated nests. The largest annual number of green turtle nests documented was 29 in 2017. Nesting appeared to increase since 2010, but at a much lower rate than at other GoM nesting beaches. To aid with recovery, efforts should be undertaken to monitor long-term nesting trends, protect nesting turtles and nests, and investigate potential causes for the slower recovery in Texas. Additionally, the genetic structure of the population that nests in Texas should be determined to reveal if the population warrants recognition as a unique management unit, or if it is part of a broader unit that is a shared nesting resource with Mexico which is already being considered as a unique management unit.

Spatial Self-Organization as a New Perspective on Cold-Water Coral Mound Development

van der Kaaden A-S, van Oevelen D, Rietkerk M, Soetaert K, van de Koppel J. Spatial Self-Organization as a New Perspective on Cold-Water Coral Mound Development. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00631/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Cold-water corals build extensive reefs on the seafloor that are oases of biodiversity, biomass, and organic matter processing rates. The reefs baffle sediments, and when coral growth and sedimentation outweigh ambient sedimentation, carbonate mounds of tens to hundreds of meters high and several kilometers wide can form. Because coral mounds form over ten-thousands of years, their development process remains elusive. While several environmental factors influence mound development, the mounds also have a major impact on their environment. This feedback between environment and mounds, and how this drives mound development is the focus of this paper. Based on the similarity of spatial coral mound patterns and patterns in self-organized ecosystems, we provide a new perspective on coral mound development. In accordance with the theory of self-organization through scale-dependent feedbacks, we first elicit the processes that are known to affect mound development, and might cause scale-dependent feedbacks. Then we demonstrate this concept with model output from a study on the Logachev area, SW Rockall Trough margin. Spatial patterns in mound provinces are the result of a complex set of interacting processes. Spatial self-organization provides a framework in which to place and compare these processes, so as to assess if and how they contribute to pattern formation in coral mounds.

Seagrass Restoration Is Possible: Insights and Lessons From Australia and New Zealand

Tan YMei, Dalby O, Kendrick GA, Statton J, Sinclair EA, Fraser MW, Macreadie PI, Gillies CL, Coleman RA, Waycott M, et al. Seagrass Restoration Is Possible: Insights and Lessons From Australia and New Zealand. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00617/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Seagrasses are important marine ecosystems situated throughout the world’s coastlines. They are facing declines around the world due to global and local threats such as rising ocean temperatures, coastal development and pollution from sewage outfalls and agriculture. Efforts have been made to reduce seagrass loss through reducing local and regional stressors, and through active restoration. Seagrass restoration is a rapidly maturing discipline, but improved restoration practices are needed to enhance the success of future programs. Major gaps in knowledge remain, however, prior research efforts have provided valuable insights into factors influencing the outcomes of restoration and there are now several examples of successful large-scale restoration programs. A variety of tools and techniques have recently been developed that will improve the efficiency, cost effectiveness, and scalability of restoration programs. This review describes several restoration successes in Australia and New Zealand, with a focus on emerging techniques for restoration, key considerations for future programs, and highlights the benefits of increased collaboration, Traditional Owner (First Nation) and stakeholder engagement. Combined, these lessons and emerging approaches show that seagrass restoration is possible, and efforts should be directed at upscaling seagrass restoration into the future. This is critical for the future conservation of this important ecosystem and the ecological and coastal communities they support.

Pages