Effects of CO2 concentration on a late summer surface sea ice community

Last modified: 
April 23, 2017 - 7:29pm
Type: Journal Article
Year of publication: 2017
Date published: 04/2017
Authors: Andrew McMinn, Marius Müller, Andrew Martin, Sarah Ugalde, Shihong Lee, Katerina Castrisios, Ken Ryan
Journal title: Marine Biology
Volume: 164
Issue: 4
ISSN: 0025-3162

Annual fast ice at Scott Base (Antarctica) in late summer contained a high biomass surface community of mixed phytoflagellates, dominated by the dinoflagellate, Polarella glacialis. At this time of the year, ice temperatures rise close to melting point and salinities drop to less than 20. At the same time, pH levels can rise above 9 and nutrients can become limiting. In January 2014, the sea ice microbial community from the top 30 cm of the ice was exposed to a gradient of pH and CO2 (5 treatments) that ranged from 8.87 to 7.12 and 5–215 µmol CO2 kg−1, respectively, and incubated in situ. While growth rates were reduced at the highest and lowest pH, the differences were not significant. Likewise, there were no significant differences in maximum quantum yield of PSII (Fv/Fm) or relative maximum electron transfer rates (rETRmax) among treatments. In a parallel experiment, a CO2 gradient of 26–230 µmol CO2kg−1 (5 treatments) was tested, keeping pH constant. In this experiment, growth rates increased by approximately 40% with increasing CO2, although differences among treatments were not significant.. As in the previous experiment, there was no significant response in Fv/Fm or rETRmax. A synchronous grazing dilution experiment found grazing rates to be inconclusive These results suggest that the summer sea ice brine communities were not limited by in situ CO2 concentrations and were not adversely affected by pH values down to 7.1.

Freely available?: 
No
Approximate cost to purchase or rent this item from the publisher: US $39.95
Summary available?: 
No

Report an error or inaccuracy

Notice an error in the Literature item above? Please let us know in the comments section below. Thank you for helping us keep the Literature Library up-to-date!

Add new comment