Carbon isotope fractionation in the mangrove Avicennia marina has implications for food web and blue carbon research

Last modified: 
December 13, 2019 - 7:27pm
Type: Journal Article
Year of publication: 2018
Date published: 05/2018
Authors: Jeffrey Kelleway, Debashish Mazumder, Jeffrey Baldock, Neil Saintilan
Journal title: Estuarine, Coastal and Shelf Science
Volume: 205
Pages: 68 - 74
ISSN: 02727714

The ratio of stable isotopes of carbon (δ13C) is commonly used to track the flow of energy among individuals and ecosystems, including in mangrove forests. Effective use of this technique requires understanding of the spatial variability in δ13C among primary producer(s) as well as quantification of the isotopic fractionations that occur as C moves within and among ecosystem components. In this experiment, we assessed δ13C variation in the cosmopolitan mangrove Avicennia marina across four sites of varying physico-chemical conditions across two estuaries. We also compared the isotopic values of five distinct tissue types (leaves, woody stems, cable roots, pneumatophores and fine roots) in individual plants.

We found a significant site effect (F3, 36 = 15.78; P < 0.001) with mean leaf δ13C values 2.0‰ more depleted at the lowest salinity site compared to the other locations. There was a larger within-plant fractionation effect, however, with leaf samples (mean ± SE = −29.1 ± 0.2) more depleted in 13C than stem samples (−27.1 ± 0.1), while cable root (−25. 8 ± 0.1), pneumatophores (−25.7 ± 0.1) and fine roots (−26.0 ± 0.2) were more enriched in 13C relative to both aboveground tissue types (F4, 36 = 223.45; P < 0.001).

The within-plant δ13C fractionation we report for A. marina is greater than that reported in most other ecosystems. This has implications for studies of estuarine carbon cycling. The consistent and large size of the fractionation from leaf to woody stem (∼2.0‰) and mostly consistent fractionation from leaf to root tissues (>3.0‰) means that it may now be possible to partition the individual contributions of various mangrove tissues to estuarine food webs. Similarly, the contributions of mangrove leaves, woody debris and belowground sources to blue carbon stocks might also be quantified. Above all, however, our results emphasize the importance of considering appropriate mangrove tissue types when using δ13C to trace carbon cycling in estuarine systems.

Freely available?: 
No
Approximate cost to purchase or rent this item from the publisher: US $35.95
Summary available?: 
No