Thermal performance of fish is explained by an interplay between physiology, behaviour, and ecology

Last modified: 
July 11, 2018 - 10:25am
Type: Unpublished
Year of publication: 2018
Date published: 07/2018
Authors: Philipp Neubauer, Ken Andersen

Increasing temperatures under climate change are thought to affect individual physiology of fish and other ectotherms through increases in metabolic demands, leading to changes in species performance with concomitant effects on species ecology. Although intuitively appealing, the driving mechanism behind thermal performance is contested: thermal performance (e.g., growth) appears correlated with metabolic scope (i.e., oxygen availability for activity) for a number of species, but a substantial number of datasets do not support oxygen limitation of long-term performance. Whether or not oxygen limitations via the metabolic scope, or a lack thereof, have major ecological consequences remains a highly contested question. Here, we propose a general size and trait-based model of energy and oxygen budgets to determine the relative influence of metabolic rates, oxygen limitation, and environmental conditions on ecotherm performance. We show that oxygen limitation is not necessary to explain performance variation with temperature. Oxygen can drastically limit performance and fitness, especially at temperature extremes, but changes in thermal performance are primarily driven by the interplay between changing metabolic rates and species ecology. Furthermore, our model reveals that fitness trends with temperature can oppose trends in growth, suggesting a potential explanation for the paradox that species often occur at lower temperatures than their growth-optimum. Our model provides a mechanistic underpinning that can provide general and realistic predictions about temperature impacts on the performance of fish and other ectotherms, and function as a null model for contrasting temperature impacts on species with different metabolic and ecological traits.

Freely available?: 
Yes

(Links to preprints and postprints are checked for validity at the time of publication. If this link does not work, please let us know in the comments below. Additionally, you may use the Google Scholar link below to search for alternative freely-available versions of this resource.)

Summary available?: 
No

Report an error or inaccuracy

Notice an error in the Literature item above? Please let us know in the comments section below. Thank you for helping us keep the Literature Library up-to-date!

Add new comment