Microbial ecosystem dynamics drive fluctuating nitrogen loss in marine anoxic zones

Last modified: 
April 2, 2019 - 2:10pm
Type: Journal Article
Year of publication: 2019
Date published: 03/2021
Authors: Justin Penn, Thomas Weber, Bonnie Chang, Curtis Deutsch
Journal title: Proceedings of the National Academy of Sciences
Pages: 201818014
ISSN: 0027-8424

The dynamics of nitrogen (N) loss in the ocean’s oxygen-deficient zones (ODZs) are thought to be driven by climate impacts on ocean circulation and biological productivity. Here we analyze a data-constrained model of the microbial ecosystem in an ODZ and find that species interactions drive fluctuations in local- and regional-scale rates of N loss, even in the absence of climate variability. By consuming O2 to nanomolar levels, aerobic nitrifying microbes cede their competitive advantage for scarce forms of N to anaerobic denitrifying bacteria. Because anaerobes cannot sustain their own low-O2 niche, the physical O2 supply restores competitive advantage to aerobic populations, resetting the cycle. The resulting ecosystem oscillations induce a unique geochemical signature within the ODZ—short-lived spikes of ammonium that are found in measured profiles. The microbial ecosystem dynamics also give rise to variable ratios of anammox to heterotrophic denitrification, providing a mechanism for the unexplained variability of these pathways observed in the ocean.

Freely available?: 
Yes
Summary available?: 
No

Report an error or inaccuracy

Notice an error in the Literature item above? Please let us know in the comments section below. Thank you for helping us keep the Literature Library up-to-date!

Add new comment