Acidification decreases microbial community diversity in the Salish Sea, a region with naturally high pCO2

Last modified: 
October 30, 2020 - 1:32pm
Type: Journal Article
Year of publication: 2020
Date published: 10/2020
Authors: Lisa Crummett
Journal title: PLOS ONE
Volume: 15
Issue: 10
Pages: e0241183

Most literature exploring the biological effects of ocean acidification (OA) has focused on macroscopic organisms and far less is known about how marine microbial communities will respond. Studies of OA and microbial community composition and diversity have examined communities from a limited number of ocean regions where the ambient pH is near or above the global average. At San Juan Island (Salish Sea), a region that experiences naturally low pH (average = 7.8), the picoplankton (cell diameter is 0.2–2μm) community was predicted to show no response to experimental acidification in a three-week mesocosm experiment. Filtered seawater mesocosms were maintained via semicontinuous culturing. Three control mesocosms were maintained at pH 8.05 and three acidified mesocosms were maintained at pH 7.60. Total bacteria was quantified daily with a flow cytometer. Microbial communities were sampled every two days via filtration followed by DNA extraction, 16S rRNA amplification, and MiSeq sequencing. There was no significant difference in total bacteria between pH treatments throughout the experiment. Acidification significantly reduced Shannon’s diversity over time. During the final week of the experiment, acidification resulted in a significant decrease in Shannon’s diversity, Faith’s phylogenetic distance, and Pielous’s Evenness. ANCOM results revealed four bacterial ASVs (amplicon sequence variants), in families Flavobaceriaceae and Hyphomonadaceae that significantly decreased in relative frequency under acidification and two bacterial ASVs, in families Flavobacteriaceae and Alteromonadaceae, that significantly increased under acidification. This is the first OA study on the microbial community of the Salish Sea, a nutrient rich, low pH region, and the first of its kind to report a decrease in both picoplankton richness and evenness with acidification. These findings demonstrate that marine microbial communities that naturally experience acidic conditions are still sensitive to acidification.

Freely available?: 
Yes
Summary available?: 
No