The impact of sea-level rise and basin area reduction on the cyclic behavior of tidal inlet systems

Last modified: 
December 28, 2020 - 6:20pm
Type: Journal Article
Year of publication: 2021
Date published: 02/2021
Authors: Klaas Lenstra, Maarten van der Vegt
Journal title: Continental Shelf Research
Volume: 214
Pages: 104323
ISSN: 02784343

Ebb-tidal deltas filter incoming wave energy and mitigate erosion of basins and coasts by temporarily providing sediment. In many systems, these coastal safety functions are under threat from human activities. Here we use Delft3D/SWAN to assess the effects of relative sea-level rise and changes in basin area on the long-term dynamics of ebb-tidal deltas. The results show that the time scales of the cyclic channel-shoal dynamics of ebb-tidal deltas are affected. An instantaneous decrease in basin area slows down the cyclic behavior during the initial adjustment period. The duration of the adjustment period increases with larger basin area reduction. After the adjustment, smaller basins have shorter time scales of cyclic channel-shoal dynamics. This is linked to a decrease in tidal prism and ebb-tidal delta volume. Moreover, we find that the effects of relative sea-level rise depend on the rate of rising water levels. For relatively low rates, the period of the cycles eventually shortens, whereas higher rates can cause longer periods. The volume of ebb-tidal deltas appears to be unaffected by relative sea-level rise; but because the average water depth increases, more energetic waves reach the basin. By showing how ebb-tidal deltas adjust to relative sea-level rise and basin area reduction and by unraveling the underlying mechanisms, this study contributes to our understanding of the long-term evolution of tidal inlets.

Freely available?: 
Summary available?: