Characterizing juvenile salmon predation risk during early marine residence

Last modified: 
March 1, 2021 - 12:25pm
Type: Journal Article
Year of publication: 2021
Date published: 02/2021
Authors: Elizabeth Phillips, John Horne, Jeannette Zamon
Journal title: PLOS ONE
Volume: 16
Issue: 2
Pages: e0247241

Predation mortality can influence the distribution and abundance of fish populations. While predation is often assessed using direct observations of prey consumption, potential predation can be predicted from co-occurring predator and prey densities under varying environmental conditions. Juvenile Pacific salmon Oncorhynchus spp. (i.e., smolts) from the Columbia River Basin experience elevated mortality during the transition from estuarine to ocean habitat, but a thorough understanding of the role of predation remains incomplete. We used a Holling type II functional response to estimate smolt predation risk based on observations of piscivorous seabirds (sooty shearwater [Ardenna griseus] and common murre [Uria aalge]) and local densities of alternative prey fish including northern anchovy (Engraulis mordax) in Oregon and Washington coastal waters during May and June 2010–2012. We evaluated predation risk relative to the availability of alternative prey and physical factors including turbidity and Columbia River plume area, and compared risk to returns of adult salmon. Seabirds and smolts consistently co-occurred at sampling stations throughout most of the study area (mean = 0.79 ± 0.41, SD), indicating that juvenile salmon are regularly exposed to avian predators during early marine residence. Predation risk for juvenile coho (Oncorhynchus kisutch), yearling Chinook salmon (Otshawytscha), and subyearling Chinook salmon was on average 70% lower when alternative prey were present. Predation risk was greater in turbid waters, and decreased as water clarity increased. Juvenile coho and yearling Chinook salmon predation risk was lower when river plume surface areas were greater than 15,000 km2, while the opposite was estimated for subyearling Chinook salmon. These results suggest that plume area, turbidity, and forage fish abundance near the mouth of the Columbia River, all of which are influenced by river discharge, are useful indicators of potential juvenile salmon mortality that could inform salmonid management.

Freely available?: 
Yes
Summary available?: 
No