Genetic Susceptibility, Colony Size, and Water Temperature Drive White-Pox Disease on the Coral Acropora palmata

Last modified: 
August 30, 2016 - 10:02am
Tags: 
Type: Journal Article
Year of publication: 2014
Date published: 11/2014
Authors: Erinn Muller, Robert van Woesik
Journal title: PLOS ONE
Volume: 9
Issue: 11
Pages: e110759

Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes.

Freely available?: 
Yes
Summary available?: 
No

Report an error or inaccuracy

Notice an error in the Literature item above? Please let us know in the comments section below. Thank you for helping us keep the Literature Library up-to-date!

Add new comment