Freely-available Literature

Currently indexing 2857 freely-available titles

The following titles are freely-available, or include a link to a preprint or postprint.

Persistence and Change in Community Composition of Reef Corals through Present, Past, and Future Climates

Edmunds PJ, Adjeroud M, Baskett ML, Baums IB, Budd AF, Carpenter RC, Fabina NS, Fan T-Y, Franklin EC, Gross K, et al. Persistence and Change in Community Composition of Reef Corals through Present, Past, and Future Climates. PLOS ONE [Internet]. 2014 ;9(10):e107525. Available from: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0107525
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The reduction in coral cover on many contemporary tropical reefs suggests a different set of coral community assemblages will dominate future reefs. To evaluate the capacity of reef corals to persist over various time scales, we examined coral community dynamics in contemporary, fossil, and simulated future coral reef ecosystems. Based on studies between 1987 and 2012 at two locations in the Caribbean, and between 1981 and 2013 at five locations in the Indo-Pacific, we show that many coral genera declined in abundance, some showed no change in abundance, and a few coral genera increased in abundance. Whether the abundance of a genus declined, increased, or was conserved, was independent of coral family. An analysis of fossil-reef communities in the Caribbean revealed changes in numerical dominance and relative abundances of coral genera, and demonstrated that neither dominance nor taxon was associated with persistence. As coral family was a poor predictor of performance on contemporary reefs, a trait-based, dynamic, multi-patch model was developed to explore the phenotypic basis of ecological performance in a warmer future. Sensitivity analyses revealed that upon exposure to thermal stress, thermal tolerance, growth rate, and longevity were the most important predictors of coral persistence. Together, our results underscore the high variation in the rates and direction of change in coral abundances on contemporary and fossil reefs. Given this variation, it remains possible that coral reefs will be populated by a subset of the present coral fauna in a future that is warmer than the recent past.

Using Models of Social Transmission to Examine the Spread of Longline Depredation Behavior among Sperm Whales in the Gulf of Alaska

Schakner ZA, Lunsford C, Straley J, Eguchi T, Mesnick SL. Using Models of Social Transmission to Examine the Spread of Longline Depredation Behavior among Sperm Whales in the Gulf of Alaska. PLOS ONE [Internet]. 2014 ;9(10):e109079. Available from: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0109079
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Fishing, farming and ranching provide opportunities for predators to prey on resources concentrated by humans, a behavior termed depredation. In the Gulf of Alaska, observations of sperm whales depredating on fish caught on demersal longline gear dates back to the 1970s, with reported incidents increasing in the mid-1990s. Sperm whale depredation provides an opportunity to study the spread of a novel foraging behavior within a population. Data were collected during National Marine Fisheries Service longline surveys using demersal longline gear in waters off Alaska from 1998 to 2010. We evaluated whether observations of depredation fit predictions of social transmission by fitting the temporal and spatial spread of new observations of depredation to the Wave of Advance model. We found a significant, positive relationship between time and the distance of new observations from the diffusion center (r2 = 0.55, p-value = 0.003). The data provide circumstantial evidence for social transmission of depredation. We discuss how changes in human activities in the region (fishing methods and regulations) have created a situation in which there is spatial-temporal overlap with foraging sperm whales, likely influencing when and how the behavior spread among the population.

Rapid Fishery Assessment by Market Survey (RFAMS) – An Improved Rapid-Assessment Approach to Characterising Fish Landings in Developing Countries

White WT, Last PR, Faizah R, Chodrijah U, Buckworth RC, Dichmont CM. Rapid Fishery Assessment by Market Survey (RFAMS) – An Improved Rapid-Assessment Approach to Characterising Fish Landings in Developing Countries. PLOS ONE [Internet]. 2014 ;9(10):e109182. Available from: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0109182
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The complex multi-gear, multi-species tropical fisheries in developing countries are poorly understood and characterising the landings from these fisheries is often impossible using conventional approaches. A rapid assessment method for characterising landings at fish markets, using an index of abundance and estimated weight within taxonomic groups, is described. This approach was developed for contexts where there are no detailed data collection protocols, and where consistent data collection across a wide range of fisheries types and geographic areas is required, regardless of the size of the site and scale of the landings. This methodology, which was demonstrated at seven fish landing sites/fish markets in southern Indonesia between July 2008 and January 2011, provides a rapid assessment of the abundance and diversity in the wild catch over a wide variety of taxonomic groups. The approach has wider application for species-rich fisheries in developing countries where there is an urgent need for better data collection protocols, monitoring future changes in market demographics, and evaluating health of fisheries.

Integration at the Round Table: Marine Spatial Planning in Multi-Stakeholder Settings

Olsen E, Fluharty D, Hoel AHåkon, Hostens K, Maes F, Pecceu E. Integration at the Round Table: Marine Spatial Planning in Multi-Stakeholder Settings. PLOS ONE [Internet]. 2014 ;9(10):e109964. Available from: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0109964
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine spatial planning (MSP) is often considered as a pragmatic approach to implement an ecosystem based management in order to manage marine space in a sustainable way. This requires the involvement of multiple actors and stakeholders at various governmental and societal levels. Several factors affect how well the integrated management of marine waters will be achieved, such as different governance settings (division of power between central and local governments), economic activities (and related priorities), external drivers, spatial scales, incentives and objectives, varying approaches to legislation and political will. We compared MSP in Belgium, Norway and the US to illustrate how the integration of stakeholders and governmental levels differs among these countries along the factors mentioned above. Horizontal integration (between sectors) is successful in all three countries, achieved through the use of neutral ‘round-table’ meeting places for all actors. Vertical integration between government levels varies, with Belgium and Norway having achieved full integration while the US lacks integration of the legislature due to sharp disagreements among stakeholders and unsuccessful partisan leadership. Success factors include political will and leadership, process transparency and stakeholder participation, and should be considered in all MSP development processes.

Multiple stressors threatening the future of the Baltic Sea–Kattegat marine ecosystem: Implications for policy and management actions

Jutterström S, Andersson HC, Omstedt A, Malmaeus JM. Multiple stressors threatening the future of the Baltic Sea–Kattegat marine ecosystem: Implications for policy and management actions. Marine Pollution Bulletin [Internet]. 2014 ;86(1–2):468 - 480. Available from: http://www.sciencedirect.com/science/article/pii/S0025326X1400407X
Freely available?: 
Yes
Summary available?: 
Yes
Type: Journal Article

The paper discusses the combined effects of ocean acidification, eutrophication and climate change on the Baltic Sea and the implications for current management strategies. The scientific basis is built on results gathered in the BONUS+ projects Baltic-C and ECOSUPPORT. Model results indicate that the Baltic Sea is likely to be warmer, more hypoxic and more acidic in the future. At present management strategies are not taking into account temporal trends and potential ecosystem change due to warming and/or acidification, and therefore fulfilling the obligations specified within the Marine Strategy Framework Directive, OSPAR and HELCOM conventions and national environmental objectives may become significantly more difficult. The paper aims to provide a basis for a discussion on the effectiveness of current policy instruments and possible strategies for setting practical environmental objectives in a changing climate and with multiple stressors.

Seafood Knowledge, Perceptions and Use Patterns in Florida

Adams C, Krimsky L, Saari B, Fluech B. Seafood Knowledge, Perceptions and Use Patterns in Florida. Gainesville: Florida Sea Grant; 2014 p. 39. Available from: https://www.flseagrant.org/wp-content/uploads/TP_205_web.pdf
Freely available?: 
Yes
Summary available?: 
No
Type: Report

Florida represents a major component of the nation’s seafood industry. The commercial fishing industry in Florida lands approximately 100 million pounds of wild-caught finfish and shellfish annually. Over one hundred species, including shrimp, grouper, spiny lobster, stone crab, snapper, and others, are harvested in Florida and comprise an extremely diverse mix of high-quality products that are eventually sold into local, regional, and national markets. While effective management has kept the traditional finfish and shellfish species in the markets, an even more diverse group of seafood products are imported into Florida from other states and foreign sources.

During 2012, the quantity of imported seafood into the US market exceeded domestic landings by 42%. With Florida being a leading state for importing and processing seafood, the contribution of imports into local markets cannot be understated. The seafood industry in Florida includes a complex network of harvesting, importation, processing, and sales which fuels a very large economic engine. Florida-harvested seafood annually generates $171 million in economic impacts and creates over 7,400 jobs, while imported seafood generates $2.4 billion in economic impacts and creates 65,000 jobs. The economic importance of the state’s industry aside, locally-harvested and imported seafood products provide Florida’s seafood consumers with an unparalleled assortment of seafood products to savor and enjoy.

As the demand for seafood continues to grow in Florida, driven by a growing population, a constantly changing ethnicity mix, and evolving economic conditions, the need for a high-quality, diverse, sustainable, and affordable seafood supply is increasingly important. However, many Floridians are becoming more concerned about the origin, quality, sustainability, safety, affordability, and convenience of the seafood products they purchase. Local food movements are compelling consumers to purchase more locally sourced products. The growing presence of “green” products and eco-labeling is creating an awareness of the sustainability of seafood. Convenience packaging is realizing a growing market share as consumers continue to seek confidence in preparing seafood at home. In addition, the media exposure of contaminants in food products and the increasing incidence of economic fraud, such as mislabeling, contribute to a complex and confusing marketplace. Consumer confusion and uncertainty exists, creating a demonstrable need for educational programs that help can help buyers make informed decisions about the seafood products they should purchase for their households.

Thus, a survey of Florida seafood consumer preferences, perceptions and concerns was needed to assess the regional educational needs of seafood consumers. A survey was needed to address the myriad issues concerning seafood quality, safety, product origin, mislabeling, sustainability and traceability. The survey also addressed regional needs within the state (i.e., proximity to the coast, north/south/central with the peninsula, etc.), seasonality issues, consumer demographics, awareness of health benefits associated with seafood, preparation methods, and concerns associated with recent environmental events. The findings of the survey augment the information that exists from previous seafood perception surveys for Florida and the other states within the Gulf region. The survey findings are a key source of information to accurately assess the educational needs of the future educational programs and help identify the topics of greatest concern to various clientele groups.

Toward a Sustainable Caribbean FAD Fishery

Sidman C, Lorenzen K, Sebastien R, Magloire A, Cruickshank-Howard J, Hazell J, Masters J. Toward a Sustainable Caribbean FAD Fishery. Gainesville: Florida Sea Grant; 2014 p. 20. Available from: https://www.flseagrant.org/wp-content/uploads/TP_206_Toward_A_Sustainable_Caribbean_web.pdf
Freely available?: 
Yes
Summary available?: 
No
Type: Report

Fisheries are an important source of food, income and cultural identity for Caribbean communities. While reef fisheries in the Caribbean are frequently over-exploited, offshore pelagic resources also targeted by the US sport-fishing industry may generate alternative economic benefits and divert pressure from reefs. Key to the efficient harvesting of thinly-distributed pelagic fish is the use of fish aggregation devices (FADs). Traditionally, FADs were deployed by individuals or close-knit groups of fishers. Recently, governments have deployed public FADs accessible to all. There is concern that public FADs are exploited less efficiently and produce conflicts related to crowding and misuse.

In partnership with Counterpart International, the Caribbean Regional Fisheries Mechanism and the Dominica and St. Vincent and the Grenadines Fisheries Divisions, Florida Sea Grant collected information from fishermen on their use of FADs that were deployed privately, by small groups or by the government. This allowed for a determination of governance arrangements that were most profitable and provided input to stakeholder meetings with FAD fishers to identify best practices for sustainably using and co-managing FADs.

The fishing trip analysis shows that catch and profitability are higher when FADs are managed privately or by small groups and access to the aggregated fisheries resources is somewhat restricted. An engagement strategy that introduced an activity planner as a best practice to increase information sharing helped strengthen the rapport between government and fisheries stakeholders. Study results are helping shape regional implementation of policy, which favors FADs co-managed by fishers and government, but can benefit from positive aspects of FADs managed privately or by small groups.

The movement ecology of seagrasses

McMahon K, van Dijk K-jent, Ruiz-Montoya L, Kendrick GA, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, et al. The movement ecology of seagrasses. Proceedings of the Royal Society B: Biological Sciences [Internet]. 2014 ;281(1795):20140878. Available from: http://rspb.royalsocietypublishing.org/content/281/1795/20140878.abstract
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

A movement ecology framework is applied to enhance our understanding of the causes, mechanisms and consequences of movement in seagrasses: marine, clonal, flowering plants. Four life-history stages of seagrasses can move: pollen, sexual propagules, vegetative fragments and the spread of individuals through clonal growth. Movement occurs on the water surface, in the water column, on or in the sediment, via animal vectors and through spreading clones. A capacity for long-distance dispersal and demographic connectivity over multiple timeframes is the novel feature of the movement ecology of seagrasses with significant evolutionary and ecological consequences. The space–time movement footprint of different life-history stages varies. For example, the distance moved by reproductive propagules and vegetative expansion via clonal growth is similar, but the timescales range exponentially, from hours to months or centuries to millennia, respectively. Consequently, environmental factors and key traits that interact to influence movement also operate on vastly different spatial and temporal scales. Six key future research areas have been identified.

Ecosystem goods and services in marine protected areas (MPAs)

van den Belt M, Cole A. Ecosystem goods and services in marine protected areas (MPAs). Wellington: New Zealand Department of Conservation; 2014 p. 100. Available from: http://www.doc.govt.nz/Documents/science-and-technical/sfc326entire.pdf
Freely available?: 
Yes
Summary available?: 
No
Type: Report

he concept of ecosystem goods and services (ES) has become increasingly important in conservation management. This report provides an overview of how ES theory, classification, valuation methods and spatial modelling tools can be used to manage and protect New Zealand’s existing marine parks, management areas, sanctuaries and the protected area network. Specifically, it summarises the ES of coastal and marine areas, including marine protected areas (MPAs), and provides an estimate of their values, based on a benefit-transfer of values from the literature. The rapid ecosystem services assessment (RESA) method was applied to seven New Zealand marine areas, including the Exclusive Economic Zone (and Territorial Sea), a marine mammal sanctuary and five marine reserves. These RESAs were based on GIS data, which generated a solid starting point for the valuations and highlighted the benefit of having clear definitions of biomes. Collectively, the case-study areas generated an average ES value of NZ$403B per year for 2010, which is about 2.07 times gross domestic product (GDP) for that same year (NZ$194B) and equates to a per capita ES value of NZ$92,245 per year. Qualitative analysis of the supply, demand and value of ES suggests that a change in the legal status of a marine or coastal area will only bring benefits if the value is perceived—which is often not the case for marine ecosystems. Therefore, this report concludes with an overview of the tools that are being developed for ES valuation, ranging from those that can be applied when the benefits are evident to those that are more suitable for when they are not.

Assessing the Health of the U.S. West Coast with a Regional-Scale Application of the Ocean Health Index

Halpern BS, Longo C, Scarborough C, Hardy D, Best BD, Doney SC, Katona SK, McLeod KL, Rosenberg AA, Samhouri JF. Assessing the Health of the U.S. West Coast with a Regional-Scale Application of the Ocean Health Index. PLOS ONE [Internet]. 2014 ;9(6):e98995. Available from: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0098995
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Management of marine ecosystems increasingly demands comprehensive and quantitative assessments of ocean health, but lacks a tool to do so. We applied the recently developed Ocean Health Index to assess ocean health in the relatively data-rich US west coast region. The overall region scored 71 out of 100, with sub-regions scoring from 65 (Washington) to 74 (Oregon). Highest scoring goals included tourism and recreation (99) and clean waters (87), while the lowest scoring goals were sense of place (48) and artisanal fishing opportunities (57). Surprisingly, even in this well-studied area data limitations precluded robust assessments of past trends in overall ocean health. Nonetheless, retrospective calculation of current status showed that many goals have declined, by up to 20%. In contrast, near-term future scores were on average 6% greater than current status across all goals and sub-regions. Application of hypothetical but realistic management scenarios illustrate how the Index can be used to predict and understand the tradeoffs among goals and consequences for overall ocean health. We illustrate and discuss how this index can be used to vet underlying assumptions and decisions with local stakeholders and decision-makers so that scores reflect regional knowledge, priorities and values. We also highlight the importance of ongoing and future monitoring that will provide robust data relevant to ocean health assessment.

From Decline to Recovery: A Rescue Package for the Global Ocean

Anon. From Decline to Recovery: A Rescue Package for the Global Ocean. Oxford, UK: The Global Ocean Commission; 2014 p. 47. Available from: http://www.globaloceancommission.org/news/the-global-ocean-commissions-final-report-is-now-available/
Freely available?: 
Yes
Summary available?: 
Yes
Type: Report

The vastness of the ocean came sharply into focus nearly 50 years ago, when the Apollo missions produced the first images of our overwhelmingly blue planet from space. More recently, a number of United Nations reports and peer-reviewed scientific studies have underlined the interconnectedness between the planetary climate and ocean systems, and the central role that the ocean is playing in protecting us from the impacts of climate change. Yet, despite this heightened awareness, the ocean remains chronically undervalued, poorly managed and inadequately governed.

This is particularly true of the high seas, the 64% of the total surface area of the ocean that is beyond the jurisdiction of any State. The high seas also provides a critical life-support function for areas within the national jurisdiction of coastal States (exclusive economic zones or EEZs) and what happens on the high seas can and does have a significant impact on the ecological health and productivity of EEZs.

When the United Nations Convention on the Law of the Sea (UNCLOS) – the ‘constitution for the ocean’ – was negotiated, the high seas was protected by its inaccessibility. Today, there is virtually nowhere that industrial fishing vessels cannot reach, offshore oil and gas drilling is extending further and deeper every year, and deep sea mineral extraction is fast becoming a reality. The concept of the ‘freedom of the high seas’ guaranteed in the Convention once conjured up images of adventure and opportunity, but it is now driving a relentless ‘tragedy of the commons’, characterised by the depletion of fish stocks and other precious marine resources. The freedom is being exploited by those with the money and ability to do so, with little sense of responsibility or social justice.

People have lived near the ocean for millennia and maritime communities have always recognised the importance of the ocean and made it the centre of their economies and cultures. While it was living ocean resources that first drew people to the sea – and ocean fisheries and aquaculture today provide food for billions of people as well as livelihoods for millions – today we are increasingly aware of the less visible yet even more vital role the ocean plays in regulating the life-giving systems of our planet. It is the great biological pump at the heart of global atmospheric and thermal regulation and the driver of the water and nutrient cycles.

High seas ecosystems are estimated to be responsible for nearly half of the biological productivity of the entire ocean. The global ocean produces almost half of all the oxygen we breathe and absorbs more than a quarter of the carbon dioxide we emit into the atmosphere. More than 90% of the heat trapped in the Earth system by greenhouse gas emissions is stored in the ocean, providing a buffer against the full impacts of climate change on land; but this is having alarming consequences on ocean life and is perhaps the largest unseen environmental disaster of our time.

The ocean is, in essence, the kidney of our planet, keeping its systems healthy and productive. But the ability of the ocean to continue to provide these essential ecosystem services is being compromised as rising temperatures reduce its oxygen-carrying capacity. The increasing uptake of carbon dioxide is causing ocean acidification, and unprecedented changes in chemical and physical conditions are already impacting the distribution and abundance of marine organisms and ecosystems. The very life of the global ocean, from the smallest phytoplankton to the largest of the great whales, is being impacted.

The international community has expended a tremendous amount of political capital and diplomatic effort on establishing policy commitments aimed at reversing ocean degradation. Unfortunately, there remains a huge gap between the commitments expressed in various policy documents and the willingness or ability of States to implement them. For example, the Heads of State and Government at the 2002 World Summit on Sustainable Development (WSSD) said that they would establish a representative network of marine protected areas (MPAs) by 2012, but by the time of the 2012 Rio+20 Summit it was evident that little progress had been made towards meeting this target, especially beyond coastal areas. Today, MPAs cover less than 1% of the high seas.

The conclusion we have come to is that the current governance system for the management of human activities impacting the high seas is no longer fit for purpose and cannot ensure longterm sustainability or equity in resource allocation, nor create the conditions for maximising economic benefits from the high seas. UNCLOS has proven itself particularly slow in responding to new challenges, not least when it comes to improving the management of growing threats and risks to biodiversity, ecosystems and fishery resources in the high seas, a need that has been widely recognised since at least 2002.

By understanding the drivers of decline individually and together, we have come to understand that what is needed is an integrated rescue package which can deliver ocean restoration when undertaken as a whole. We have considered equity, development and sustainability, and economic as well as intrinsic values. We have thought about the roles of consumers, intermediaries and markets, politicians, direct users and indirect beneficiaries.

Report of the Aspen Ocean Community Strategy Roundtable

Anon. Report of the Aspen Ocean Community Strategy Roundtable. Washington, D.C.: The Aspen Institute, Energy & Environment Program; 2014. Available from: http://www.aspeninstitute.org/policy-work/energy-environment/oceans
Freely available?: 
Yes
Summary available?: 
No
Type: Report

In 2013, the Aspen Institute published The Ocean Community Report, a study based on a 2012 roundtable discussion with oceans leaders at Fort Baker, California on the state of ocean conservation, as well as two research papers on marine protection advocacy, policy and management.

The report’s recommendations suggested opportunities for improving the effectiveness of collaboration among ocean conservation advocacy groups, funders and policymakers, including taking advantage of the synergies between conservation tools, reframing ocean conservation as a solution to other national issues, and promoting win-win conservation opportunities.

Building on this report, a second gathering of oceans experts was convened one year later at Aspen Wye River to assess the steps required for scaling investment in and deployment of ocean conservation tools in both small-scale coastal fisheries and large-scale MPAs. This roundtable served as a platform for the community to discuss and develop its alignment of conservation priorities with socioeconomic goals and advance innovative conservation financing opportunities.

Based on these 2013 discussions at Wye River, and Aspen’s Ocean Community Report, the following recommendations have been forwarded for continued reflection and prioritization by the ocean community:

  1. Public-Private Partnerships on ocean conservation should be built around the needs of local governments and communities—rather than solely around MPAs, MSP or biodiversity—and focus on specific local fisheries problems, food security challenges and economic needs. This approach will get at the heart of the particular goals in which that country will be more willing to invest public funds. The global replication of successful marine protection requires the development of a clear and strong value proposition, such that the conservation community becomes an agent for establishing the systems and benefits that local leaders themselves want. Moving forward, the conservation community must apply a nuanced understanding of strategies for inspiring local leadership in this way, especially in the case of initially unreceptive governments.
     
  2. Scaling marine protection to the levels required for global impact will require significant partnership with not only government but with the private sector, specifically with corporations. Where MPAs, MSP or TURFs may gain little traction, developing a stronger economic development approach of selling a specific goal (in this case, long-term conservation of marine resources) will help coastal communities to understand the product being offered and better recognize its value. The private sector—especially corporations dependent on coastal resilience—is particularly interested in the sustainability of small scale artisanal fisheries, and so will lead the way in creating sustainable ocean economies by investing in coastal resilience and implementing technologies that make enhanced marine protection and monitoring possible.
     
  3. An innovative and landscape-changing approach to replicating marine conservation is coordination by NGOs or funders using a subcontractor model of partnership and coordination, whereby a single NGO or funder entity develops the demand and commitment from local political leadership, and then delivers on the goals by establishing partnerships with those best prepared to achieve specific goals.

The High Seas and Us: Understanding the Value of High-Seas Ecosystems

Rogers AD, Sumaila UR, Hussain SS, Baulcomb C. The High Seas and Us: Understanding the Value of High-Seas Ecosystems. Oxford, UK: The Global Ocean Commission; 2014. Available from: http://www.globaloceancommission.org/news/life-in-the-high-seas-storing-500-million-tonnes-of-atmospheric-carbon-every-year/
Freely available?: 
Yes
Summary available?: 
No
Type: Report

The industrialisation and overuse of the high seas jeopardises the natural wealth of their ecosystems and the services they provide to people. Fishing and shipping continue to inflict harm on high-seas ecosystems. Mining for minerals and new sources of fossil fuels will likely increase the industrial use of the high seas and will further damage their ecosystems. At the same time, the governance of the high seas is fragmented, with different international institutions focusing on specific industrial activities, places, or even different parts of the ecosystems. For instance, weak fisheries governance in the high seas has led to ad hoc regulation that varies from place to place. The result has been widespread overfishing.

There is growing evidence that the ecosystem services provided by the high seas are of high social and economic value. The evidence also is clear that poor management of human activities on the high seas has eroded the natural wealth and productivity of high-seas ecosystems with negative economic and social consequences for all of us.

We examine 15 important ecosystem services provided by the high seas. These fall into the categories of provisioning services (seafood; raw materials; genetic resources; medicinal resources; ornamental resources), regulating services (air purification; climate regulation; waste treatment; biological control) habitat services (lifecycle maintenance; gene pool protection) and cultural services (recreation and leisure; aesthetic information; information for culture, art, design and for cognitive development). The quantity and quality of ecosystem services depend directly on both the living (e.g. animals, algae, microorganisms) and non-living (e.g. the shape and structure of the seabed) components of the marine ecosystems of the high seas.

To understand the potential value of high-seas ecosystem services, we describe and quantify, when possible, the provision and general nature of values provided by these 15 types of ecosystem services. We put these values in the context of the costs of improved governance and management of human activities in the high seas with a particular focus on improved marine protection.

Few ecosystem services in the high seas can be accurately valued given currently available information. We lack scientific information about the provision and use of most high-seas ecosystem services and their quantity and nature, and even lack knowledge regarding how and where, precisely, they are produced. The high seas support economically important species that may swim, migrate or drift well beyond the physical boundaries of the high seas. This makes it difficult to disentangle the contribution of high-seas ecosystems to the services that are produced in the high seas but are enjoyed elsewhere – sometimes thousands of kilometres away. Many high-seas ecosystem services are not enjoyed directly in all contexts. Instead, in some contexts, many play an intermediate role in the creation of ecosystem services elsewhere (e.g. high-seas ecosystems support prey that are consumed by commercially important fish species which are harvested elsewhere). Clearly, there is the need for more and better science on the provision and value of high-seas ecosystem services.

We provide estimates of the economic value of two important high-seas ecosystem services: carbon storage and fisheries. Carbon is stored by high-seas ecosystems as part of naturally occurring processes in which marine organisms convert sunlight and carbon dioxide into energy and biological production. We estimate that high-seas ecosystems are responsible for nearly half of the biological productivity of the global ocean. While the science of carbon sequestration in the high seas is still evolving, we estimate that nearly half a billion tonnes of carbon, the equivalent of over 1.5 billion tonnes of carbon dioxide, are captured and stored by high-seas ecosystems annually. Based on current estimates of the economic cost of additional carbon in the atmosphere (i.e. the social cost of carbon), we find that the value of carbon storage by high-seas ecosystems ranges between US$74 billion and US$222 billion annually.

Gap Analysis Report: Strategic Environmental Impact Assessment of development of the Arctic

Tedsen E, Riedel A, Weingartner K, Azzolini R, Guillon F, Longo S, Leone C, Paadar O, Leonenko A. Gap Analysis Report: Strategic Environmental Impact Assessment of development of the Arctic. Arctic Centre, University of Lapland; 2014 p. 104. Available from: www.arcticinfo.eu
Freely available?: 
Yes
Summary available?: 
No
Type: Report

A new report on Arctic information and communication needs (“Gap Analysis Report”) has been released as part of the Strategic Environmental Impact Assessment of development of the Arctic Preparatory Action project, funded by DG Environment of the European Commission. The Gap Analysis Report was led by Ecologic Institute in partnership with the European Science Foundation, National Research Council of Italy, Sámi Education Institute, and Tromsø Centre for Remote Sensing.

The report identifies, analyzes, and illustrates the Arctic information needs of stakeholders and policy-makers and offers recommendations on ways to improve knowledge and to improve two-way communication between information providers and users. It highlights information and communication gaps and major Arctic trends throughout a number of thematic areas and human needs in the Arctic. The Gap Analysis Report also assesses how an EU Arctic Information Centre (EUAIC) could improve information provision and communication.

“The Gap Analysis Report demonstrates that Arctic stakeholders not only desire new information, but also seek better, coordinated access to existing information sources, which a network of expert institutes operating as an EU Arctic Information Centre could help facilitate,” said Elizabeth Tedsen, Fellow at Ecologic Institute.

“The Arctic has become of global interest during the past few years, and it is important that images, decisions, and policies regarding the development of the region are based on best available information,” commented Professor Paula Kankaanpää,  Director of the Arctic Centre and Principal Investigator on the Preparatory Action.

While the report’s recommendations in the context of the Preparatory Action were necessarily limited due to its broad thematic focus, it should be seen as a building block for future efforts, including for subject-specific recommendations that draw from the wealth of knowledge of Arctic stakeholders.

Shallow water benthic habitats in the Gulf of Maine: A summary of habitat use by life stages of common marine and estuarine species

Stevenson DK, Johnson MR, Tuxbury S, Boelke C. Shallow water benthic habitats in the Gulf of Maine: A summary of habitat use by life stages of common marine and estuarine species. Gloucester, MA: NOAA Fisheries Greater Atlantic Regional Fisheries Office; 2014 p. 77. Available from: https://www.nero.noaa.gov/policyseries/index.php/GARPS/article/view/11
Freely available?: 
Yes
Summary available?: 
No
Type: Report

Shallow-water estuarine and coastal marine habitats in the Gulf of Maine comprise some of the most productive habitats in the northeastern United States and have been identified as Essential Fish Habitat (EFH)1 for many species of importance to commercial and recreational fisheries. However, these near-shore habitats are also the most vulnerable to human disturbances due to their proximity to coastal population centers. The purpose of this report is to describe the importance of shallow-water habitats (0-10 meters) for spawning, feeding, and growth to maturity for 16 fish and invertebrate species in the Gulf of Maine based on a literature review. The species include a mix of federally managed fishery species, state-managed fishery species and other species that are important members of the shallow-water marine ecosystem. Habitat use was assessed for individual life history stages of each species in eight shallow-water benthic habitats: mud, sand, gravel/cobble, boulder, eelgrass, macroalgae, salt marsh channels, and shellfish beds. Habitat use scores (0 = absent, 1 = present, and 2 = common or abundant) were assigned to each benthic life stage of each species known to occur in depths less than 10 meters. Scores were then summarized for all species in each habitat type. According to this evaluation, shallow-water habitats in the Gulf of Maine are used by young-of-the-year juveniles of all 16 species. Additionally, older juveniles of 12 species and adults of 11 species also rely on these habitats. Nine of the sixteen species spawn in one or more of these habitats. Further analysis shows that sand and gravel/cobble habitats are used by the most species and life stages, followed by mud, eelgrass, macroalgae, boulder, salt marsh channels, and shell (mussel) beds. Shallowwater habitats in the Gulf of Maine provide valuable ecological services for a variety of species. Mud, sand, gravel/cobble, and vegetated habitats are particularly important as juvenile nursery grounds for species such as Atlantic cod, Atlantic tomcod, American lobsters, winter flounder, soft-shell clams, and blue mussels.

Climate-Smart Conservation: Putting Adaptation Principles into Practice

Stein BA, Glick P, Edelson N, Staudt A eds. Climate-Smart Conservation: Putting Adaptation Principles into Practice. Washington, D.C.: National Wildlife Federation; 2014 p. 272. Available from: http://www.nwf.org/What-We-Do/Energy-and-Climate/Climate-Smart-Conservation/Guide-to-Climate-Smart-Conservation.aspx
Freely available?: 
Yes
Summary available?: 
No
Type: Report

An important goal of this guidance is to help practitioners and policy-makers understand what constitutes “good” climate adaptation, how to recognize those characteristics in existing work, as well as how to design new interventions when necessary. Part I of this guide focuses on exploring climate-smart conservation, and offers a structured process for putting it into practice. To this end, we define “climate-smart conservation” as:

The intentional and deliberate consideration of climate change in natural resource management, realized through adopting forward-looking goals and explicitly linking strategies to key climate impacts and vulnerabilities.

Determining what represents appropriate and relevant adaptation is highly context specific, but there are a number of attributes that can help distinguish when and whether climate considerations are suitably being incorporated into conservation work. To assist practitioners in making that distinction, we have identified the following set of key characteristics that collectively define a climate-informed approach to conservation.

Status and Trends of Caribbean Coral Reefs: 1970-2012

Jackson J, Donovan M, Cramer K, Lam V eds. Status and Trends of Caribbean Coral Reefs: 1970-2012. Gland, Switzerland: Global Coral Reef Monitoring Network, IUCN; 2014 p. 306. Available from: http://www.icriforum.org/caribbeanreport
Freely available?: 
Yes
Summary available?: 
Yes
Type: Report

Outbreaks of Acropora and Diadema diseases in the 1970s and early 1980s, overpopulation in the form of too many tourists, and overfishing are the three best predictors of the decline in Caribbean coral cover over the past 30 or more years based on the data available. Coastal pollution is undoubtedly increasingly significant but there are still too little data to tell. Increasingly warming seas pose an ominous threat but so far extreme heating events have had only localized effects and could not have been responsible for the greatest losses of Caribbean corals that had occurred throughout most of the wider Caribbean region by the early to mid 1990s.

In summary, the degradation of Caribbean reefs has unfolded in three distinct phases:

  1. Massive losses of Acropora since the mid 1970s to early 1980s due to WBD. These losses are unrelated to any obvious global environmental change and may have been due to introduced pathogens associated with enormous increases in ballast water discharge from bulk carrier shipping since the 1960s.
     
  2. Very large increase in macroalgal cover and decrease in coral cover at most overfished locations following the 1983 mass mortality of Diadema due to an unidentified and probably exotic pathogen. The phase shift in coral to macroalgal dominance reached a peak at most locations by the mid 1990s and has persisted throughout most of the Caribbean for 25 years. Numerous experiments provide a link between macroalgal increase and coral decline. Macroalgae reduce coral recruitment and growth, are commonly toxic, and may induce coral disease.
     
  3. Continuation of the patterns established in Phase 2 exacerbated by even greater overfishing, coastal pollution, explosions in tourism, and extreme warming events that in combination have been particularly severe in the northeastern Caribbean and Florida Keys where extreme bleaching followed by outbreaks of coral disease have caused the greatest declines.

Making the Best of a Pest: The Potential for Using Invasive Zebra Mussel (Dreissena Polymorpha) Biomass as a Supplement to Commercial Chicken Feed

McLaughlan C, Rose P, Aldridge DC. Making the Best of a Pest: The Potential for Using Invasive Zebra Mussel (Dreissena Polymorpha) Biomass as a Supplement to Commercial Chicken Feed. Environmental Management [Internet]. 2014 :1-8. Available from: http://link.springer.com/article/10.1007%2Fs00267-014-0335-6
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Invasive non-native species frequently occur in very high densities. When such invaders present an economic or ecological nuisance, this biomass is typically removed and landfill is the most common destination, which is undesirable from both an economic and ecological perspective. The zebra mussel, Dreissena polymorpha, has invaded large parts of Europe and North America, and is routinely removed from raw water systems where it creates a biofouling nuisance. We investigated the suitability of dried, whole zebra mussels as a supplement to poultry feed, thus providing a more attractive end-use than disposal to landfill. Measurable outcomes were nutrient and energy composition analyses of the feeds and production parameters of the birds over a 14 day period. Zebra mussels were a palatable feed supplement for chickens. The mussel meal contained high levels of calcium (344.9 g kg−1), essential for egg shell formation, which was absorbed and retained easily by the birds. Compared with standard feed, a mussel-supplemented diet caused no significant effects on production parameters such as egg weight and feed conversion ratio during the study period. However, protein and energy levels in the zebra mussel feed were much lower than expected from the literature. In order for zebra mussels to be a viable long-term feed supplement for poultry, flesh would need to be separated from the shells in an economically viable way. If zebra mussels were to be used with the shells remaining, it seems that the resultant mussel meal would be more suitable as a calcium supplement.

Assessing Social – Ecological Trade-Offs to Advance Ecosystem-Based Fisheries Management

Voss R, Quaas MF, Schmidt JO, Tahvonen O, Lindegren M, Möllmann C. Assessing Social – Ecological Trade-Offs to Advance Ecosystem-Based Fisheries Management. PLOS ONE [Internet]. 2014 ;9(9):e107811. Available from: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0107811
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Modern resource management faces trade-offs in the provision of various ecosystem goods and services to humanity. For fisheries management to develop into an ecosystem-based approach, the goal is not only to maximize economic profits, but to consider equally important conservation and social equity goals. We introduce such a triple-bottom line approach to the management of multi-species fisheries using the Baltic Sea as a case study. We apply a coupled ecological-economic optimization model to address the actual fisheries management challenge of trading-off the recovery of collapsed cod stocks versus the health of ecologically important forage fish populations. Management strategies based on profit maximization would rebuild the cod stock to high levels but may cause the risk of stock collapse for forage species with low market value, such as Baltic sprat (Fig. 1A). Economically efficient conservation efforts to protect sprat would be borne almost exclusively by the forage fishery as sprat fishing effort and profits would strongly be reduced. Unless compensation is paid, this would challenge equity between fishing sectors (Fig. 1B). Optimizing equity while respecting sprat biomass precautionary levels would reduce potential profits of the overall Baltic fishery, but may offer an acceptable balance between overall profits, species conservation and social equity (Fig. 1C). Our case study shows a practical example of how an ecosystem-based fisheries management will be able to offer society options to solve common conflicts between different resource uses. Adding equity considerations to the traditional trade-off between economy and ecology will greatly enhance credibility and hence compliance to management decisions, a further footstep towards healthy fish stocks and sustainable fisheries in the world ocean.

Regional Scale Prioritisation for Key Ecosystem Services, Renewable Energy Production and Urban Development

Casalegno S, Bennie JJ, Inger R, Gaston KJ. Regional Scale Prioritisation for Key Ecosystem Services, Renewable Energy Production and Urban Development. PLOS ONE [Internet]. 2014 ;9(9):e107822. Available from: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0107822
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Although the importance of addressing ecosystem service benefits in regional land use planning and decision-making is evident, substantial practical challenges remain. In particular, methods to identify priority areas for the provision of key ecosystem services and other environmental services (benefits from the environment not directly linked to the function of ecosystems) need to be developed. Priority areas are locations which provide disproportionally high benefits from one or more service. Here we map a set of ecosystem and environmental services and delineate priority areas according to different scenarios. Each scenario is produced by a set of weightings allocated to different services and corresponds to different landscape management strategies which decision makers could undertake. Using the county of Cornwall, U.K., as a case study, we processed gridded maps of key ecosystem services and environmental services, including renewable energy production and urban development. We explored their spatial distribution patterns and their spatial covariance and spatial stationarity within the region. Finally we applied a complementarity-based priority ranking algorithm (zonation) using different weighting schemes. Our conclusions are that (i) there are two main patterns of service distribution in this region, clustered services (including agriculture, carbon stocks, urban development and plant production) and dispersed services (including cultural services, energy production and floods mitigation); (ii) more than half of the services are spatially correlated and there is high non-stationarity in the spatial covariance between services; and (iii) it is important to consider both ecosystem services and other environmental services in identifying priority areas. Different weighting schemes provoke drastic changes in the delineation of priority areas and therefore decision making processes need to carefully consider the relative values attributed to different services.

Pages