Freely-available Literature

Currently indexing 4258 freely-available titles

The following titles are freely-available, or include a link to a preprint or postprint.

The usual suspects? Distribution of collaboration capital in marine biodiversity research

Tolochko P, Vadrot ABM. The usual suspects? Distribution of collaboration capital in marine biodiversity research. Marine Policy [Internet]. 2021 ;124:104318. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X20309659?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

International scientific collaboration is vital for supporting global and regional measures to protect marine biodiversity in and beyond national jurisdiction. While scientists and governments seem to agree that scientific cooperation is also needed to reduce global imbalances to explore and exploit marine biodiversity, progress in defining and assessing developing countries’ needs has been slow. This paper aims to identify some of those needs by mapping the global distribution of scientific publications from the marine biodiversity field from 1990 until 2018. We present bibliographic data gathered from the Web of Science Core Collection using network analysis and article meta-data to examine international cooperation patterns both within and across regions. We introduce a novel measure, ‘collaboration capital’, which, based on metrics derived from a co-authorship network, attempts to gauge how valuable other actors in the network perceive the collaboration with an actor. Our data reveal that the US and Europe’s usual suspects allocate a significant proportion of collaboration capital from all regions. In turn, regional research networks in Asia, South America, and Africa are severely underdeveloped. These results suggest that measures to strengthen scientific collaboration within regions and between neighboring countries may contribute to strengthening regional research networks, for instance, by encouraging large emerging economies such as Brazil and China to become leaders in their regions in this respect. We conclude that capacity-building measures, such as discussed in current marine biodiversity negotiations, should foster regional scale cooperation efforts.

Commitments to sustainable fisheries: Empty words or reality?

Huse G, Bjordal Å, Loeng H, Toft KØstervold, Toresen R. Commitments to sustainable fisheries: Empty words or reality?. Marine Policy [Internet]. 2021 ;124:104360. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X20310113?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Our Ocean conferences focus on voluntary commitments by different pledgers in support of actions towards a clean, healthy and productive ocean. We analysed the content and summarised the progress of implementation of the commitments related to sustainable fisheries at the Our Ocean conferences during 2014–2018. A total of 77 different entities provided commitments. Governments was the largest group (34) followed by NGOs (23). The majority (58%) of commitments were related to enforcement, transparency and cooperation. In particular, combating illegal, unreported and unregulated fisheries and support for the port state measures process were the focus of many of the commitments. To increase transparency and effectiveness of commitments, we suggest that more emphasis should be put on documenting and evaluating the impact of commitments. There is good progress in the implementation, and the commitments are largely reality and not empty words. We consider that the commitments have been successful in terms of generating attention and providing funding of projects that are supportive of sustainable fisheries. The diversity of pledgers is large, and an objective gap analysis on requirements for achieving sustainable fisheries regionally could provide pledgers with common ground and further increase the impact of the Our Ocean conferences.

Public perceptions of ocean health and marine protection: Drivers of support for Oregon's marine reserves

Manson P, Nielsen-Pincus M, Granek EF, Swearingen TC. Public perceptions of ocean health and marine protection: Drivers of support for Oregon's marine reserves. Ocean & Coastal Management [Internet]. 2021 ;201:105480. Available from: https://www.sciencedirect.com/science/article/pii/S0964569120303872?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Over the past several decades marine conservation policy has supported the implementation of protected areas in ocean and coastal environments to restrict some elements of human use for ecological benefits. The appropriate extent of protection and the allowable uses are often the subject of public debate about marine protected area policy. Local community dynamics around marine protected area designation and management have been the subject of much ocean and coastal management social science research. However, broader public opinions and attitudes about marine protected areas are not well understood and are critical for managers seeking to maintain their public trust obligations in environmental management. This paper provides a model for understanding the attitudes and beliefs that foster public support for or opposition to marine protections. We explored the relationships between awareness, attitudes and beliefs towards coastal and marine resource issues and uses, and demographics among a sample of Oregon, USA residents (n = 459), and tested their influence on support for expanding Oregon's recently established marine reserves. We found that Oregonians have relatively low familiarity with Oregon's marine reserve system, but that familiarity did not influence public support for Oregon's marine reserves. Instead public support was lower among coastal residents and those with positive attitudes towards commercial fisheries, and higher for those concerned with the ecological integrity of Oregon's ocean and supportive of some limits to human uses of the ocean. Our findings highlight the need for managers to engage both coastal communities and the general public to make a case for the value of marine protected areas in safeguarding the public trust.

The impact of sea-level rise and basin area reduction on the cyclic behavior of tidal inlet systems

Lenstra KJH, van der Vegt M. The impact of sea-level rise and basin area reduction on the cyclic behavior of tidal inlet systems. Continental Shelf Research [Internet]. 2021 ;214:104323. Available from: https://www.sciencedirect.com/science/article/pii/S0278434320302764?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ebb-tidal deltas filter incoming wave energy and mitigate erosion of basins and coasts by temporarily providing sediment. In many systems, these coastal safety functions are under threat from human activities. Here we use Delft3D/SWAN to assess the effects of relative sea-level rise and changes in basin area on the long-term dynamics of ebb-tidal deltas. The results show that the time scales of the cyclic channel-shoal dynamics of ebb-tidal deltas are affected. An instantaneous decrease in basin area slows down the cyclic behavior during the initial adjustment period. The duration of the adjustment period increases with larger basin area reduction. After the adjustment, smaller basins have shorter time scales of cyclic channel-shoal dynamics. This is linked to a decrease in tidal prism and ebb-tidal delta volume. Moreover, we find that the effects of relative sea-level rise depend on the rate of rising water levels. For relatively low rates, the period of the cycles eventually shortens, whereas higher rates can cause longer periods. The volume of ebb-tidal deltas appears to be unaffected by relative sea-level rise; but because the average water depth increases, more energetic waves reach the basin. By showing how ebb-tidal deltas adjust to relative sea-level rise and basin area reduction and by unraveling the underlying mechanisms, this study contributes to our understanding of the long-term evolution of tidal inlets.

The effects of water injection dredging on low-salinity estuarine ecosystems: Implications for fish and macroinvertebrate communities

Pledger AG, Brewin P, Mathers KL, Phillips J, Wood PJ, Yu D. The effects of water injection dredging on low-salinity estuarine ecosystems: Implications for fish and macroinvertebrate communities. Ecological Indicators [Internet]. 2021 ;122:107244. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X20311833?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Subaqueous dredging is a management activity undertaken globally to improve navigation, remove contaminants, mitigate flood risk and/or generate aggregate. Water Injection Dredging (WID) is a hydrodynamic technique involving the turbation and downstream displacement of fine sediments using vessel-mounted water jets. Despite the technique being widely applied internationally, the environmental and ecological effects of WID are poorly understood. For the first time, this study used a Before-After-Control-Impact (BACI) experimental design to assess the effects of WID on water physicochemistry, and macroinvertebrate and fish communities within a 5.7 km-long reach of tidal river. WID targeted the central channel (thalweg) to avoid disturbance of the channel margins and banks. Mean but not peak turbidity levels were substantially elevated, and dissolved oxygen levels were reduced during periods of WID, although effects were relatively short-lived (≈3 h on average). Dredging resulted in significant reductions in benthic macroinvertebrate community abundance (particularly taxa that burrow into fine sediments), taxonomic richness and diversity. In contrast, minor changes were detected in marginal macroinvertebrate communities within and downstream of the dredged reach following WID. Reductions in fish taxonomic richness and diversity were recorded downstream of the dredged reach most likely due to behavioural avoidance of the sediment plume. No visibly stressed or dead fish were sampled during dredging. Results suggest that mobile organisms and marginal communities were largely unaffected by thalweg WID and that the technique represents a more ecologically sensitive alternative to traditional channel margin mechanical dredging techniques.

Assessment of microplastic pollution in the aquatic ecosystems – An indian perspective

Vanapalli KRaja, Dubey BK, Sarmah AK, Bhattacharya J. Assessment of microplastic pollution in the aquatic ecosystems – An indian perspective. Case Studies in Chemical and Environmental Engineering [Internet]. 2021 ;3:100071. Available from: https://www.sciencedirect.com/science/article/pii/S2666016420300694?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Microplastics (MPs) are ubiquitous in the aquatic environment due to plastic waste proliferation in diverse sectors. The recent years have witnessed exponential growth in the number of studies focusing on their occurrence, distribution and toxicity in several parts of India. The overarching aim of this article is to evaluate the sources, abundance, and characteristics of MPs reported in the sediments, water, and biota of the aquatic ecosystems in India. The review revealed that while the MPs from land-based sources such as littering, domestic sewage, and industrial runoff were carried by rivers and streams, MPs from other sources including marine litter and accidental spillages during shipping directly enter the aquatic environment. The unique hydrodynamic conditions during the southwest and northeast monsoons were found to influence the abundance and distribution of MPs in the Indian aquatic ecosystems. Although the seaward flushing and monsoonal flux were reported to increase the abundance of MPs, the reversal of the winds and currents during the NE monsoon was observed to oppose the drift of MPs towards the Goa coast. The reported higher concentrations of MPs in the beach sediments collected from the high tide line (1323 ​± ​1228 ​mg/m2) as compared to that of low tide line (178 ​± ​261 ​mg/m2) along the southeast coast of India also emphasize the tidal influence. While the shape and type of MPs can help in determining their sources, their size and colour might influence their ingestion in aquatic biota and also indicate the amount of degradation. The variability in the characteristics of MPs observed between different studies could also be a factor of difference in the sampling and analysis techniques adopted. Although the general practice of degutting before consumption could lower the risk of MPs transfer from fish, popular delicacies of dried fish and shrimps could be potential sources of human ingestion. Since the research was mostly confined to the southern coasts of India and some urban recreational beaches, the MP pollution on other coastal regions of India remains largely unexplored. Moreover, with very few studies reporting on the MP pollution in the freshwater ecosystems, the wide network of rivers and enclosed water bodies could also be the major focus of future research.

Environmental justice in coastal systems: Perspectives from communities confronting change

Lau JD, Gurney GG, Cinner J. Environmental justice in coastal systems: Perspectives from communities confronting change. Global Environmental Change [Internet]. 2021 ;66:102208. Available from: https://www.sciencedirect.com/science/article/pii/S0959378020307913?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Life in the Pacific is characterised by interconnected, fast and slow socio-ecological change. These changes inevitably involve navigating questions of justice, as they shift who benefits from, owns, and governs resources, and whose claims and rights are recognized. Thus, greater understanding of perceptions of environmental justice within communities will be crucial to support fair adaptation. We contend that an environmental justice approach offers a theoretical foundation to help illuminate key concerns and trade-offs as communities navigate global change. Here, we apply an empirical environmental justice lens to the use and customary management of coastal resources in Papua New Guinea. Through two case studies, we examine perceptions of distributional, procedural and recognitional justice. We find similarities and differences. There were common concerns about the injustice of unequal fishing pressure and destructive methods, but in one case, concerns about people’s material needs overrode concerns about non-compliance and unequal costs. In the other case, deliberative decision-making served as a platform for not only negotiating and re-defining the distribution of costs and benefits, but also airing grievances, thereby strengthening recognition of different people’s values and concerns. In addition, we find that recognitional aspects of justice, such as respect, can confer or undermine the legitimacy of procedures for governing resources and thus making fair decisions about distribution. The heterogeneity of justice criteria in our cases emphasizes the need to elicit and understand plural justice perceptions in different contexts.

Beyond the boundaries: How regulation-centered marine protected area information improves ocean protection assessments

Sletten J, D'Iorio M, Gleason MG, Driedger A, Vincent T, Colegrove C, Wright D, Zetterlind V. Beyond the boundaries: How regulation-centered marine protected area information improves ocean protection assessments. Marine Policy [Internet]. 2021 ;124:104340. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X20309908?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Comprehensive, spatially explicit data that include regulatory information are essential for evaluating the level of protection that marine protected areas (MPAs) and other marine managed areas (MMAs) provide to marine life, and to inform progress towards ocean protection targets. An analysis based on the ProtectedSeas database, which includes information on regulated activities, found that 85% of U.S. waters are in managed areas that restrict living resource extraction at some level above generally applicable regulations, with 52% managed at a low level of protection and 3% managed as highly protected no-take areas. States with the most state waters area in no-take MPAs are Hawaii (~25%), California (~9%), and Oregon (~3%). The majority of highly protected areas in U.S. waters exist in low-populated areas of the Pacific, such as the Papahānaumokuākea and Pacific Remote Islands Marine National Monuments. Under a quarter of U.S. waters are closed to bottom trawling, with the West Coast and Alaska each contributing one-third of trawl closures by area. Bottom trawling is prohibited in nearly 90% of West Coast waters. Focusing on waters off California showed that overlapping management and fishing gear restrictions can increase overall protection. In state waters, no-take MPAs account for roughly 9% of the area, while restricted take MPAs of different types cover 27% of the area. About 40% of California state waters are in some kind of MPA, while 13.4% of state waters have a high level of protection from fishing impacts. In federal waters off California, under one percent are in no-take areas while nearly all waters are subject to some kind of fishery restriction. Capturing regulatory information at the individual MPA and MMA level will improve assessments of current protection, inform planning of new protections, and provide ocean users a more accessible way to increase compliance through awareness.

Bottom trawling noise: Are fishing vessels polluting to deeper acoustic habitats?

Daly E, White M. Bottom trawling noise: Are fishing vessels polluting to deeper acoustic habitats?. Marine Pollution Bulletin [Internet]. 2021 ;162:111877. Available from: https://www.sciencedirect.com/science/article/pii/S0025326X20309954?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The impact of bottom trawling noise was quantified on two surrounding marine acoustic habitats using fixed mooring acoustic recorders. Noise during trawling activity is shown to be considerably louder than ambient noise and a nearby underway research vessel. Estimated source levels were above cetacean damage thresholds. Measurements at a submarine canyon indicated potential noise focussing, inferring a role for such features to enhance down slope noise propagation at continental margin sites. Modelled sound propagates more efficiently when sourced from trawling gear dragging along the seabed relative to the vessel as a surface source. Results are contextualised with respect to marine mammal harm, to other anthropogenic ocean noise sources, topography and seasons. Noise energy emitted by bottom trawling activity is a source of pollution that requires further consideration, in line with other pervasive trawling pressures on marine species and seabed habitats, especially in areas of heightened ecological susceptibility.

Re-framing salmon aquaculture in the aftermath of the ISAV crisis in Chile

Bachmann-Vargas P, van Koppen CSA(Kris), Lamers M. Re-framing salmon aquaculture in the aftermath of the ISAV crisis in Chile. Marine Policy [Internet]. 2021 ;124:104358. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X20310095?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Globally, aquaculture is expanding rapidly, with salmon becoming one of the most dynamic and fast-growing production systems in the world. Despite its commercial success, Chilean salmon production has navigated through severe economic and sanitary crises; followed by consecutive policy changes. Between 2007 and 2009, the rapid spread and the multiple effects of the Infectious Salmon Anemia virus (ISAV) marked a tipping point in the trajectory of the salmon aquaculture in southern Chile. This paper examines the discursive mechanisms through which the Chilean salmon aquaculture industry is currently being re-framed in the aftermath of the ISAV crisis, with a focus on searching for the emergence of ecosystem-related elements post crisis. The analysis shows that Chilean salmon aquaculture is being re-framed by the reproduction of three main discourses: biosecurity, sustainable protein and The Promise of Patagonia. The paper concludes that despite the staggering effects of the ISAV crisis on the national salmon production and on coastal communities more than a decade ago, new discourses are focused on the legitimization to growth, in the absence of integrated marine ecosystem-related elements, indicating a crucial gap toward environmental sustainability in salmon aquaculture.

Ocean Acidification Induces Subtle Shifts in Gene Expression and DNA Methylation in Mantle Tissue of the Eastern Oyster (Crassostrea virginica)

Downey-Wall AM, Cameron LP, Ford BM, McNally EM, Venkataraman YR, Roberts SB, Ries JB, Lotterhos KE. Ocean Acidification Induces Subtle Shifts in Gene Expression and DNA Methylation in Mantle Tissue of the Eastern Oyster (Crassostrea virginica). Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.566419/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Early evidence suggests that DNA methylation can mediate phenotypic responses of marine calcifying species to ocean acidification (OA). Few studies, however, have explicitly studied DNA methylation in calcifying tissues through time. Here, we examined the phenotypic and molecular responses in the extrapallial fluid and mantle (fluid and tissue at the calcification site) in adult eastern oyster (Crassostrea virginica) exposed to experimental OA over 80 days. Oysters were reared under three experimental pCO2 treatments (“control,” 580 μatm; “moderate OA,” 1,000 μatm; “high OA,” 2,800 μatm) and sampled at 6 time points (24 h−80 days). We found that high OA initially induced an increase in the pH of the extrapallial fluid (pHEPF) relative to the external seawater that peaked at day 9, but then diminished over time. Calcification rates were significantly lower in the high OA treatment compared to the other treatments. To explore how oysters regulate their extrapallial fluid, gene expression and DNA methylation were examined in the mantle-edge tissue of oysters from days 9 and 80 in the control and high OA treatments. Mantle tissue mounted a significant global molecular response (both in the transcriptome and methylome) to OA that shifted through time. Although we did not find individual genes that were significantly differentially expressed under OA, the pHEPF was significantly correlated with the eigengene expression of several co-expressed gene clusters. A small number of OA-induced differentially methylated loci were discovered, which corresponded with a weak association between OA-induced changes in genome-wide gene body DNA methylation and gene expression. Gene body methylation, however, was not significantly correlated with the eigengene expression of pHEPF-correlated gene clusters. These results suggest that OA induces a subtle response in a large number of genes in C. virginica, but also indicate that plasticity at the molecular level may be limited. Our study highlights the need to reassess our understanding of tissue-specific molecular responses in marine calcifiers, as well as the role of DNA methylation and gene expression in mediating physiological and biomineralization responses to OA.

3D Ensemble Simulation of Seawater Temperature – An Application for Aquaculture Operations

Shettigar NAchutha, Bhattacharya B, Mészáros L, Spinosa A, Serafy GEl. 3D Ensemble Simulation of Seawater Temperature – An Application for Aquaculture Operations. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.592147/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

During the past decades, the aquaculture industry has developed rapidly, due to drop in wild fish catch. Water quality variables play major role in aquaculture operations, specifically seawater temperature has major impact on the metabolism of the fish species and therefore on the growth rate too. Since the fish farming business relies on the growth rate of the species to plan and operate the farm, seawater temperature becomes crucial information. With the availability of hydrodynamic modeling tools and global ocean information source such as Copernicus Marine Environment Monitoring Service (CMEMS), seawater temperature can be simulated for practically any coast with dynamic downscaling approach. However, the simulated data needs to be assessed for uncertainties for enabling informed decision making using such model predictions. In this paper, a coastal 3D hydrodynamic model aiming at simulating seawater temperature is developed for the southern Aegean Sea, Greece using the Delft3D Flexible Mesh modeling tool. Seawater temperature is impacted by atmospheric forces; therefore, uncertainties are assessed for seawater temperature using ensemble atmospheric forcing functions of the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5. Spatial analysis of the uncertainty indicates regions of different seawater temperature behavior within the model domain. Seasonal behavior of the vertical temperature gradient suggests that farms need to adapt different operational strategies in different seasons to make best use of the seawater temperature. The application of CMEMS data along with ECMWF ERA5 ensemble atmospheric forcing members proves to be beneficial in analyzing the uncertainties both in spatial and vertical gradient of seawater temperature.

Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea

Sörenson E, Farnelid H, Lindehoff E, Legrand C. Resource Partitioning Between Phytoplankton and Bacteria in the Coastal Baltic Sea. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.608244/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Eutrophication coupled to climate change disturbs the balance between competition and coexistence in microbial communities including the partitioning of organic and inorganic nutrients between phytoplankton and bacteria. Competition for inorganic nutrients has been regarded as one of the drivers affecting the productivity of the eutrophied coastal Baltic Sea. Yet, it is unknown at the molecular expression level how resources are competed for, by phytoplankton and bacteria, and what impact this competition has on the community composition. Here we use metatranscriptomics and amplicon sequencing and compare known metabolic pathways of both phytoplankton and bacteria co-occurring during a summer bloom in the archipelago of Åland in the Baltic Sea to examine phytoplankton bacteria resource partitioning. The expression of selected pathways of carbon (C), nitrogen (N), and phosphorus (P) metabolism varied over time, independently, for both phytoplankton and bacteria, indicating partitioning of the available organic and inorganic resources. This occurs regardless of eukaryotic plankton growth phase (exponential or stationary), based on expression data, and microbial community composition. Further, the availability of different nutrient resources affected the functional response by the bacteria, observed as minor compositional changes, at class level, in an otherwise taxonomically stable bacterial community. Resource partitioning and functional flexibility seem necessary in order to maintain phytoplankton-bacteria interactions at stable environmental conditions. More detailed knowledge of which organisms utilize certain nutrient species are important for more accurate projections of the fate of coastal waters.

 

Common Bottlenose Dolphin Protection and Sustainable Boating: Species Distribution Modeling for Effective Coastal Planning

La Manna G, Ronchetti F, Sarà G, Ruiu A, Ceccherelli G. Common Bottlenose Dolphin Protection and Sustainable Boating: Species Distribution Modeling for Effective Coastal Planning. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.542648/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Indicators for preserving marine biodiversity include knowledge of how the spatial distribution and critical habitats of species overlap with human activities and impacts. Such indicators are key tools for marine spatial planning, a process that identifies and resolves conflicts between human uses and the conservation of marine environments. The common bottlenose dolphin in the Mediterranean Sea is considered a vulnerable species by the IUCN Red List and a priority species of the EU Habitat Directive. Here, we estimated spatio-temporal patterns of the species occurrence in the area around one Marine Protected Area (MPA) and two Sites of Community Importance (SCI) of the North western Sardinia, with the aim to predict the species distribution and the main links with the environmental factors and boat traffic. To evaluate whether dolphin groups with calves showed any habitat preference different from groups without calves, separate models for both type of groups were done. The most important contributing variables to the dolphin habitat suitability models were the likelihood of boat presence, habitat type and mean sea surface temperature. Different model outputs were obtained depending on dolphin group composition. The area of high likelihood of dolphin presence ranged between 30 and 60 km2 and was smaller for groups with calves. Further, the area of highest dolphin habitat suitability overlaps with the area of high boat traffic, suggesting that boating in the study site is a potential relevant anthropogenic threat to dolphins. Particularly, boating is concentrated inside and around the MPA/SCIs, indicating the need for stronger restriction measures. We propose updated SCI boundaries for effective protection of common bottlenose dolphins. These areas and the suggestions of regulation are specifically aimed at reducing the impact of boating on dolphins, especially for groups with calves. Synthesis and applications. Management measures should be designed based on the data here provided, and then implemented and enforced to decrease dolphin-boat interactions, especially for mother-calf pairs. The creation of new coastal SCIs should be considered especially where boat traffic overlaps with areas most suitable for dolphins. In these SCIs, boating should be managed to limit disturbance, avoidance or alterations of dolphin vital behavior.

Assessing the Effectiveness of Coastal Marine Protected Area Management: Four Learned Lessons for Science Uptake and Upscaling

Pelletier D. Assessing the Effectiveness of Coastal Marine Protected Area Management: Four Learned Lessons for Science Uptake and Upscaling. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.545930/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

For almost two decades, marine protected areas (MPAs) have been a central instrument of coastal conservation and management policies, but concerns about their abilities to meet conservation goals have grown as the number and sizes of MPAs have dramatically increased. This paper describes how a large (15 years) program of transdisciplinary research was used to successfully measure MPA management effectiveness (ME)—how well an MPA is managed, how well it is protecting values, and how well it is achieving the various goals and objectives for which it was created. This paper addresses the co-production and uptake of monitoring-based evidence for assessing ME in coastal MPAs by synthesizing the experiences of this program conducted with MPA managers. I present the main outcomes of the program, many were novel, and discuss four ingredients (learned lessons) that underpinned the successful uptake of science during and after the research program: (i) early and inclusive co-design of the project with MPA partners and scientists from all disciplines, (ii) co-construction of common references transcending the boundaries of disciplines, and standardized methodologies and tools, (iii) focus on outcomes that are management-oriented and understandable by end-users, and (iv) ensuring that capacity building and dissemination activities occurred during and persisted beyond the program. Standardized monitoring protocols and data management procedures, a user-friendly interface for indicator analysis, and dashboards of indicators related to biodiversity, uses, and governance, were the most valued practical outcomes. Seventy-five students were trained during the projects and most of the monitoring work was conducted with MPA rangers. Such outcomes were made possible by the extended timeline offered by the three successive projects. MPA managers’ and scientists a posteriori perceptions strongly supported the relevance of such collaboration. Local monitoring and assessment meets the needs of MPA managers, and forms the basis for large-scale assessments through upscaling. A long-term synergistic transdisciplinary collaboration between coastal MPA managers and research into social-ecological systems (SESs) would simultaneously (i) address the lack of long-term resources for coastal monitoring and SES-oriented research; (ii) increase science uptake by coastal managers, and (iii) benefit assessments at higher levels or at broader geographic scales.

Arctic Marine Data Collection Using Oceanic Gliders: Providing Ecological Context to Cetacean Vocalizations

Aniceto ASofia, Pedersen G, Primicerio R, Biuw M, Lindstrøm U, Camus L. Arctic Marine Data Collection Using Oceanic Gliders: Providing Ecological Context to Cetacean Vocalizations. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.585754/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

To achieve effective management and understanding of risks associated with increasing anthropogenic pressures in the ocean, it is essential to successfully and efficiently collect data with high spatio–temporal resolution and coverage. Autonomous Underwater Vehicles (AUVs) are an example of technological advances with potential to provide improved information on ocean processes. We demonstrate the capabilities of a low-power AUV buoyancy glider for performing long endurance biological and environmental data acquisition in Northern Norway. We deployed a passive acoustic sensor system onboard a SeagliderTM to investigate presence and distribution of cetaceans while concurrently using additional onboard sensors for recording environmental features (temperature, salinity, pressure, dissolved oxygen, and chlorophyll a). The hydrophone recorded over 108.6 h of acoustic data during the spring months of March and April across the continental shelf break and detected both baleen and odontocete species. We observed a change in cetacean detections throughout the survey period, with humpback whale calls dominating the soundscape in the first weeks of deployment, coinciding with the migration toward their breeding grounds. From mid-April, sperm whales and delphinids were the predominant species, which coincided with increasing chlorophyll a fluorescence values associated with the spring phytoplankton blooms. Finally, we report daily variations in background noise associated with fishing activities and traffic in the nearby East Atlantic shipping route. Our results show that gliders provide excellent platforms for collecting information about ecosystems with minimal disturbance to animals, allowing systematic observations of our ocean biodiversity and ecosystem dynamics in response to natural variations and industrial activities.

Modeling Coral Bleaching Mitigation Potential of Water Vertical Translocation – An Analogue to Geoengineered Artificial Upwelling

Feng EY, Sawall Y, Wall M, Lebrato M, Fu Y. Modeling Coral Bleaching Mitigation Potential of Water Vertical Translocation – An Analogue to Geoengineered Artificial Upwelling. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.556192/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Artificial upwelling (AU) is a novel geoengineering technology that brings seawater from the deep ocean to the surface. Within the context of global warming, AU techniques are proposed to reduce sea surface temperature at times of thermal stress around coral reefs. A computationally fast but coarse 3D Earth System model (3.6° longitude × 1.8° latitude) was used to investigate the environmental impacts of hypothetically implemented AU strategies in the Great Barrier Reef, South China Sea, and Hawaiian regions. While omitting the discussion on sub-grid hydrology, we simulated in our model a water translocation from either 130 or 550 m depth to sea surface at rates of 1 or 50 m3 s–1 as analogs to AU implementation. Under the Representative Concentration Pathway 8.5 emissions scenario from year 2020 on, the model predicted a prevention of coral bleaching until the year 2099 when AU was implemented, except under the least intense AU scenario (water from 130 m depth at 1 m3 s–1). Yet, intense AU implementation (water from 550 m depth at 50 m3 s–1) will likely have adverse effects on coral reefs by overcooling the surface water, altering salinity, decreasing calcium carbonate saturation, and considerably increasing nutrient levels. Our result suggests that if we utilize AU for mitigating coral bleaching during heat stress, AU implementation needs to be carefully designed with respect to AU’s location, depth, intensity and duration so that undesirable environmental effects are minimized. Following a proper installation and management procedure, however, AU has the potential to decelerate destructive bleaching events and buy corals more time to adjust to climate change.

Feeding Habits of Bigeye Tuna (Thunnus obesus) in the Western Indian Ocean Reveal a Size-Related Shift in Its Fine-Scale Piscivorous Diet

Lin C-H, Lin J-S, Chen K-S, Chen M-H, Chen C-Y, Chang C-W. Feeding Habits of Bigeye Tuna (Thunnus obesus) in the Western Indian Ocean Reveal a Size-Related Shift in Its Fine-Scale Piscivorous Diet. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.582571/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

This study analyzed the piscivorous diet of bigeye tuna (Thunnus obesus) through species identification of both fish and otolith remains in stomachs of 183 bigeye tuna collected in the western Indian Ocean. A total of 642 fish remains and 1,021 fish otoliths were examined. Prey items identified in the fish and otolith remains were not completely consistent. Although 12 items out of the 53 identified taxa were found in both remains, 20 items of fish remains were not found in otolith remains, and 21 items were added only from the otoliths. The main fish remains were Alepisauridae, which accounted for 13.9%. Most of the otoliths belonged to Myctophidae (49.5%) and Scopelarchidae (21.4%). Three prey items, namely Valenciennellus tripunctulatusEvermannella sp., and Zenion sp., were recorded for the first time in the diet of bigeye tuna from the region. The otolith remains substantially enhanced the taxonomic resolution of the diet. Bigeye tuna stomach contents were independent of location, depth, and time of catch but varied with tuna size. The proportion of dominant Myctophidae prey items decreased markedly as the tuna size increased, whereas the proportion of Macrouridae increased with size. In addition, larger bigeye tuna were found feeding on larger prey (Electrona risso and Scopelarchus analis), demonstrating that diet changes in both prey composition and size are related to the ontogeny of the fish.

Modeling the Dynamics of Multispecies Fisheries: A Case Study in the Coastal Water of North Yellow Sea, China

Wo J, Zhang C, Pan X, Xu B, Xue Y, Ren Y. Modeling the Dynamics of Multispecies Fisheries: A Case Study in the Coastal Water of North Yellow Sea, China. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.524463/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ecosystem models have been developed for detecting community responses to fishing pressure and have been widely applied to predict the ecological effects of fisheries management. Key challenges of ecosystem modeling lie in the insufficient quantity and quality of data, which is unfortunately common in the marine ecosystems of many developing countries. In this study, we aim to model the dynamics of multispecies fisheries under data-limited circumstances, using a multispecies size-spectrum model (MSSM) implemented in the coastal ecosystem of North Yellow Sea, China. To make most of available data, we incorporated a range of data-limited methods for estimating the life-history parameters and conducted model validation according to empirical data. Additionally, sensitivity analyses were conducted to evaluate the impacts of input parameters on model predictions regarding the uncertainty of data and estimating methods. Our results showed that MSSM could provide reasonable predictions of community size spectra and appropriately reflect the community composition in the studied area, whereas the predictions of fisheries yields were biased for certain species. Errors in recruitment parameters were most influential on the prediction of species abundance, and errors in fishing efforts substantially affected community-level indicators. This study built a framework to integrate parameter estimation, model validation, and sensitivity analyses altogether, which could guide model development in similar mixed and data-limited fisheries and promote the use of size-spectrum model for ecosystem-based fisheries management.

Assessment of 11 Exploited Fish and Invertebrate Populations in the Japan Sea Using the CMSY and BSM Methods

Zhang S, Wang Y, Wang Y, Liang C, Xian W. Assessment of 11 Exploited Fish and Invertebrate Populations in the Japan Sea Using the CMSY and BSM Methods. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.525363/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The catch-maximum sustainable yield (CMSY) method and a closely related Bayesian state-space Schaefer surplus production model (BSM) were combined with published catch data and catch per unit effort (CPUE) time series or spawning stock biomass (SSB) data to evaluate fisheries reference points for exploited resources of the Japan Sea. Eleven fish and invertebrate stocks were assessed; outcomes obtained through this analysis were the carrying capacity, biomass trajectory, maximum sustainable yield, and related parameters of each stock. Results showed that the stock of Arctoscopus japonicus was slightly overfished; the stocks of Cleisthenes pinetorumHippoglossoides dubiusParalichthys olivaceus, and Chionoecetes opilio were overfished; and the stocks of Eopsetta grigorjewiPagrus majorGadus chalcogrammus, and Glossanodon semifasciatus were grossly overfished; Pseudopleuronectes herzensteini was proved to be severely depleted; only Pandalus eous was in good condition. These results are consistent with the few previous studies on the status of fish species around the Japan Sea, where overfishing is becoming increasingly apparent. These assessments provide a basis for guiding the use, management, and rebuilding of fishery resources in the Japan Sea.

Pages