Freely-available Literature

Currently indexing 3294 freely-available titles

The following titles are freely-available, or include a link to a preprint or postprint.

Oil spill settlement funds directed to seabird conservation

Bertram DF. Oil spill settlement funds directed to seabird conservation. Marine Policy [Internet]. 2019 ;108:103622. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X19302490
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Settlement funds from catastrophes can generate lasting conservation benefits, if directed appropriately. Such is the case with the Nestucca oil spill which occurred in Washington State in 1988. The spill killed thousands of marine birds and the subsequent litigation settlement awarded 3.3 million dollars for recovery and monitoring of Canadian seabirds, in addition to clean-up costs. Settlement damage funds were directed to eradicate introduced rats from Langara Island, to restore what was formerly the world's largest colony of Ancient Murrelets (Synthliboramphus antiquus). In addition, settlement funds were devoted to establishing an ecosystem-level baseline of seabirds and their marine prey populations on Triangle Island, the largest and most diverse seabird colony in Western Canada. One of the projects tracked breeding Cassin's Auklet (Ptychoramphus aleuticus) and determined that they foraged far away from the colony in search of deep-sea copepods. The results stimulated conservation planners to enlarge a marine protected area which had been proposed to protect marine birds in the region, but policy guidance was lacking. By 2018 policies had evolved, and Canada announced the formation of their first marine National Wildlife Area following a multi-year engagement process with many interested parties. At the same time, Shell Canada relinquished all of their exploratory drilling rights within the area. The settlement funds from a catastrophic oil spill facilitated the recovery of seabirds on Langara Island, the formation of the first marine protected area for wildlife in Canada, and a reduction of future threats from exploratory drilling in an internationally important ecosystem.

A spatial approach to climate-resilient infrastructure in coastal social-ecological systems: The case of dumbeong in Goseong County, South Korea

Kim GW, Kang W, Lee D, Vaswani RTeku, Chon J. A spatial approach to climate-resilient infrastructure in coastal social-ecological systems: The case of dumbeong in Goseong County, South Korea. Environment International [Internet]. 2019 ;131:105032. Available from: https://www.sciencedirect.com/science/article/pii/S0160412019314862
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Sustainable landscape planning and management of coastal habitats has become an integral part of the global agenda due to anthroprogenic pressures and climate change-induced events. As an example of human-engineered infrastructure that enhances the sustainability and resilience of coastal social-ecological systems (SES), we have presented the dumbeong system, a farmer-engineered and managed irrigation system based on Korean traditional ecological knowledge. We analyzed the spatial relationship of dumbeongs with coastal landscape attributes and droughts in Goseong County in South Korea. We used generalized linear models (GLMs) to examine the effects of land cover and recent (2001–2010) standardized precipitation index (SPI) on the abundance of dumbeongs. Then, we projected near future (2020–2050) changes in the SPI-based drought risk for the dumbeong system using representative concentration pathway (RCP) climate scenarios. We found that forest and marine water areas have positive relations with dumbeong abundance, whereas SPI has a negative relation, indicating that the dumbeongs are more abundant in areas close to sea water and forests, and with higher incidences of drought. Derived climate change scenarios show that the study region will experience higher incidence of drought. Our findings provide empirical evidence for the dumbeongsystem as an effective community designed and driven adaptive response to local hydrological processes and climatic conditions, and as climate-resilient infrastructure that strengthens sustainability and resilience of coastal SES. Based on our findings, we provide recommendations for sustainable landscape management and optimal use of the dumbeong system in coastal regions.

Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem

Crozier LG, McClure MM, Beechie T, Bograd SJ, Boughton DA, Carr M, Cooney TD, Dunham JB, Greene CM, Haltuch MA, et al. Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem Dias JMiguel. PLOS ONE [Internet]. 2019 ;14(7):e0217711. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0217711
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (Otshawytscha) in the California Central Valley, coho (Okisutch) in California and southern Oregon, sockeye (Onerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids.

Marine protected area strategies: issues, divergences and the search for middle ground

Jones PJS. Marine protected area strategies: issues, divergences and the search for middle ground. Reviews in Fish Biology and Fisheries [Internet]. 2001 ;11(3):197 - 216. Available from: https://link.springer.com/article/10.1023%2FA%3A1020327007975
Freely available?: 
Yes
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

There has been a dramatic increase in recentyears in the number of papers, reports, etc.,which have been published concerning MarineProtected Areas (MPAs). This overview of theobjectives, selection, design and management ofMPAs aims to provide a basis for discussionregarding possible ways forward by identifyingemerging issues, convergences and divergences. Whilst the attributes of the marine environmentmay limit the effectiveness of site-specificinitiatives such as MPAs, it is argued that itwould be defeatist in the extreme to abandonMPAs in the face of these limitations. Ten keyobjectives for MPAs are discussed, includingthat of harvest refugia, and it is argued thatwhilst these objectives may be justifiable froma preservationist perspective, they may beobjected to from a resource exploitationperspective. MPAs generate both internal(between uses) and basic (between use andconservation) conflicts, and it is argued thatthese conflicts may be exacerbated whenscientific arguments for MPAs are motivated bypreservationist concerns. It is reported thata minority of MPAs are achieving theirmanagement objectives, and that for themajority insufficient information was availablefor such effectiveness evaluations. Structureand process-oriented perspectives on marineconservation are discussed. It is argued thatthere are two divergent stances concerningoptimal MPA management approaches: top-down,characterized as being government-led andscience-based, with a greater emphasis onset-aside; and bottom-up, characterized asbeing community-based and science-guided, witha greater emphasis on multiple-use. Given thedivergent values of different stakeholders, thehigh degree of scientific uncertainty, and thehigh marine resource management decisionstakes, it is concluded that a key challenge isto adopt a "middle-ground" approach whichcombines top-down and bottom-up approaches, andwhich is consistent with the post-normalscientific approach.

Long-term impacts of rising sea temperature and sea level on shallow water coral communities over a ~40 year period

Brown BE, Dunne RP, Somerfield PJ, Edwards AJ, Simons WJF, Phongsuwan N, Putchim L, Anderson L, Naeije MC. Long-term impacts of rising sea temperature and sea level on shallow water coral communities over a ~40 year period. Scientific Reports [Internet]. 2019 ;9(1). Available from: https://www.nature.com/articles/s41598-019-45188-x
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Effects of combined rising sea temperature and increasing sea level on coral reefs, both factors associated with global warming, have rarely been addressed. In this ~40 y study of shallow reefs in the eastern Indian Ocean, we show that a rising relative sea level, currently estimated at ~11 mm y−1, has not only promoted coral cover but also has potential to limit damaging effects of thermally-induced bleaching. In 2010 the region experienced the most severe bleaching on record with corals subject to sea temperatures of >31 °C for 7 weeks. While the reef flats studied have a common aspect and are dominated by a similar suite of coral species, there was considerable spatial variation in their bleaching response which corresponded with reef-flat depth. Greatest loss of coral cover and community structure disruption occurred on the shallowest reef flats. Damage was less severe on the deepest reef flat where corals were subject to less aerial exposure, rapid flushing and longer submergence in turbid waters. Recovery of the most damaged sites took only ~8 y. While future trajectories of these resilient reefs will depend on sea-level anomalies, and frequency of extreme bleaching the positive role of rising sea level should not be under-estimated.

Viewpoint – Ocean plastic pollution: A convenient but distracting truth?

Stafford R, Jones PJS. Viewpoint – Ocean plastic pollution: A convenient but distracting truth?. Marine Policy [Internet]. 2019 ;103:187 - 191. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X1830681X
Freely available?: 
Yes
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Ocean plastic is a contemporary focal point of concern for the marine environment. However, we argue there are bigger issues to address, including climate change and overfishing. Plastic has become a focus in the media and public domains partly through the draw of simple lifestyle changes, such as reusable water bottles, and partly through the potential to provide ‘quick fix’ technological solutions to plastic pollution, such as large scale marine clean-up operations and new ‘biodegradable’ plastic substitutes. As such, ocean plastic can provide a convenient truth that distracts us from the need for more radical changes to our behavioural, political and economic systems, addressing which will help address larger marine environmental issues, as well as the cause of plastic pollution, i.e. over-consumption.

We should not separate out environmental issues, but the current approach to plastic pollution can be a distraction from meaningful action. A response to Avery-Gomm et al.

Stafford R, Jones PJS. We should not separate out environmental issues, but the current approach to plastic pollution can be a distraction from meaningful action. A response to Avery-Gomm et al. Marine Policy [Internet]. 2019 ;107:103585. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X19304178
Freely available?: 
Yes
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

We agree with Avery-Gomm et al. that we should not separate out environmental issues. We also agree with them over the relative threat of plastic to our oceans. However, recent evidence on the ‘spillover effect’ of pro-environmental behaviours and on public attitudes to threats to areas such as the Great Barrier Reef suggest common consumerist and political approaches to tackle plastic pollution can cause a distraction from issues caused by climate change and biodiversity loss. We reiterate that we need political changes to address overconsumption in order to make real progress on all environmental issues.

Mesopelagic Sound Scattering Layers of the High Arctic: Seasonal Variations in Biomass, Species Assemblage, and Trophic Relationships

Geoffroy M, Daase M, Cusa M, Darnis G, Graeve M, Hernández NSantana, Berge J, Renaud PE, Cottier F, Falk-Petersen S. Mesopelagic Sound Scattering Layers of the High Arctic: Seasonal Variations in Biomass, Species Assemblage, and Trophic Relationships. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00364/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Mesopelagic sound scattering layers (SSL) are ubiquitous in all oceans. Pelagic organisms within the SSL play important roles as prey for higher trophic levels and in climate regulation through the biological carbon pump. Yet, the biomass and species composition of SSL in the Arctic Ocean remain poorly documented, particularly in winter. A multifrequency echosounder detected a SSL north of Svalbard, from 79.8 to 81.4°N, in January 2016, August 2016, and January 2017. Midwater trawl sampling confirmed that the SSL comprised zooplankton and pelagic fish of boreal and Arctic origins. Arctic cod dominated the fish assemblage in August and juvenile beaked redfish in January. The macrozooplankton community mainly comprised the medusa Cyanea capillata, the amphipod Themisto libellula, and the euphausiids Meganyctiphanes norvegica in August and Thysanoessa inermis in January. The SSL was located in the Atlantic Water mass, between 200–700 m in August and between 50–500 m in January. In January, the SSL was shallower and weaker above the deeper basin, where less Atlantic Water penetrated. The energy content available in the form of lipids within the SSL was significantly higher in summer than winter. The biomass within the SSL was >12-fold higher in summer, and the diversity of fish was slightly higher than in winter (12 vs. 9 species). We suggest that these differences are mainly related to life history and ontogenetic changes resulting in a descent toward the seafloor, outside the mesopelagic layer, in winter. In addition, some fish species of boreal origin, such as the spotted barracudina, did not seem to survive the polar night when advected from the Atlantic into the Arctic. Others, mainly juvenile beaked redfish, were abundant in both summer and winter, implying that the species can survive the polar night and possibly extend its range into the high Arctic. Fatty-acid trophic markers revealed that Arctic cod mainly fed on calanoid copepods while juvenile beaked redfish targeted krill (Thysanoessa spp.). The relatively high biomass of Arctic cod in August and of redfish in January thus suggests a shift within the SSL, from a Calanus-based food web in summer to a krill-based food web during winter.

Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area

Hernández CM, Witting J, Willis C, Thorrold SR, Llopiz JK, Rotjan RD. Evidence and patterns of tuna spawning inside a large no-take Marine Protected Area. Scientific Reports [Internet]. 2019 ;9(1). Available from: https://www.nature.com/articles/s41598-019-47161-0
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Phoenix Islands Protected Area (PIPA), one of the world’s largest marine protected areas, represents 11% of the exclusive economic zone of the Republic of Kiribati, which earns much of its GDP by selling tuna fishing licenses to foreign nations. We have determined that PIPA is a spawning area for skipjack (Katsuwonus pelamis), bigeye (Thunnus obesus), and yellowfin (Thunnus albacares) tunas. Our approach included sampling larvae on cruises in 2015–2017 and using a biological-physical model to estimate spawning locations for collected larvae. Temperature and chlorophyll conditions varied markedly due to observed ENSO states: El Niño (2015) and neutral (2016–2017). However, larval tuna distributions were similar amongst years. Generally, skipjack larvae were patchy and more abundant near PIPA’s northeast corner, while Thunnus larvae exhibited lower and more even abundances. Genetic barcoding confirmed the presence of bigeye (Thunnus obesus) and yellowfin (Thunnus albacares) tuna larvae. Model simulations indicated that most of the larvae collected inside PIPA in 2015 were spawned inside, while stronger currents in 2016 moved more larvae across PIPA’s boundaries. Larval distributions and relative spawning output simulations indicated that both focal taxa spawned inside PIPA in all 3 study years, demonstrating that PIPA is protecting viable tuna spawning habitat.

Herbivorous fish rise as a destructive fishing practice falls in an Indonesian marine national park

Bejarano S, Pardede S, Campbell SJ, Hoey AS, Ferse SCA. Herbivorous fish rise as a destructive fishing practice falls in an Indonesian marine national park. Ecological Applications [Internet]. 2019 . Available from: https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.1981?sid=nlm%3Apubmed
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Securing ecosystem functions is challenging, yet common priority in conservation efforts. While marine parks aim to meet this challenge by regulating fishing through zoning plans, their effectiveness hinges on compliance levels and may respond to changes in fishing practices. Here we use a speciose assemblage of nominally herbivorous reef fish in Karimunjawa National Park (zoned since 1989) to investigate whether areas subject to a restrictive management regime sustained higher biomass over seven years compared to areas where moderate and permissive regulations apply. Using a trait‐based approach we characterise the functional space of the entire species pool and ask whether changes in biomass translate into changes in functional structure. We track changes in predator biomass, benthic community structure, and fishing practices that could influence herbivore trajectories. Overall herbivore biomass doubled in 2012 compared to 2006‐2009, and remained high in 2013 across all management regimes. We found no evidence that this biomass build‐up resulted from predator depletion or increased food availability but suggest it emerged in response to a park‐wide cessation of fishing with large drive nets known as muroami. The biomass increase was accompanied by a modest increase in taxonomic richness and a slight decrease in community‐scale rarity that did not alter functional redundancy levels. Subtle changes in both functional specialisation and identity of assemblages emerged as generalist species with low intrinsic vulnerability to fishing recovered sooner than more vulnerable specialists. While this implies a recovery of mechanisms responsible for the grazing of algal turfs and detritus, restoring other facets of herbivory (e.g. macroalgal consumption) may require more time. An increase in the cost‐benefit ratio per journey of muroami fishing facilitated a ban on muroami nets that met minimal resistance. Similar windows of opportunity may emerge elsewhere in which gear‐based regulations can supplement zoning plans, especially when compliance is low. This does not advocate for implementing such regulations once a fishery has become unprofitable. Rather, it underlines their importance for breaking the cycle of resource depletion and low compliance to zoning, thus alleviating the resulting threats to food security and ecosystem integrity.

Food web and fisheries in the future Baltic Sea

Bauer B, Gustafsson BG, Hyytiäinen K, Meier HEMarkus, Müller-Karulis B, Saraiva S, Tomczak MT. Food web and fisheries in the future Baltic Sea. Ambio [Internet]. 2019 . Available from: https://link.springer.com/article/10.1007%2Fs13280-019-01229-3
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

We developed numerical simulations of potential future ecological states of the Baltic Sea ecosystem at the end of century under five scenarios. We used a spatial food web (Ecospace) model, forced by a physical–biogeochemical model. The scenarios are built on consistent storylines that describe plausible developments of climatic and socioeconomic factors in the Baltic Sea region. Modelled species diversity and fish catches are driven by climate- and nutrient load-related changes in habitat quality and by fisheries management strategies. Our results suggest that a scenario including low greenhouse gas concentrations and nutrient pollution and ecologically focused fisheries management results in high biodiversity and catch value. On the other hand, scenarios envisioning increasing societal inequality or economic growth based on fossil fuels, high greenhouse gas emissions and high nutrient loads result in decreased habitat quality and diminished biodiversity. Under the latter scenarios catches are high but they predominantly consist of lower-valued fish.

An Integrated All-Atlantic Ocean Observing System in 2030

deYoung B, Visbeck M, Filho MCunha de A, Baringer MO’Neil, Black CA, Buch E, Canonico G, Coelho P, Duha JT, Edwards M, et al. An Integrated All-Atlantic Ocean Observing System in 2030. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00428/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ocean plays a vital role in the global climate system and biosphere, providing crucial resources for humanity including water, food, energy, and raw materials. There is a compelling need to develop an integrated basin-scale ocean observing system to support of ocean management. We articulate a vision for basin-scale ocean observing – A comprehensive All-Atlantic Ocean Observing Systems that benefits all of us living, working and relying on the ocean. Until now, basin-scale ocean observation has been conducted through loosely-aligned arrangements of national and international efforts. The All-Atlantic Ocean Observing System (AtlantOS) is an integrated concept for a forward-looking framework and basin-scale partnership to establish a comprehensive ocean observing system for the Atlantic Ocean as a whole. The system will be sustainable, multi-disciplinary, multi-thematic, efficient, and fit-for-purpose. Platforms, networks, and systems do already exist that operate at various maturity levels. AtlantOS will go beyond the status quo by bringing together the observing communities and countries of the Atlantic basin, providing the opportunity to join and support the system. AtlantOS will build upon the coordinated work of the Global Ocean Observing System (GOOS) and the Group on Earth Observations (GEO), two international bodies that support and coordinate global ocean observing. AtlantOS will complement those efforts and offers a new approach to organizing ocean observing at the basin-scale. AtlantOS will focus not only on the physics but also the biology, ecology and biogeochemistry of the ocean and seafloor and will enhance new partnerships among governments, science, civil society and the private sector.

Collaborative Science to Enhance Coastal Resilience and Adaptation

C. Nichols R, Wright LD, Bainbridge SJ, Cosby A, Hénaff A, Loftis JD, Cocquempot L, Katragadda S, Mendez GR, Letortu P, et al. Collaborative Science to Enhance Coastal Resilience and Adaptation. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00404/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Impacts from natural and anthropogenic coastal hazards are substantial and increasing significantly with climate change. Coasts and coastal communities are increasingly at risk. In addition to short-term events, long-term changes, including rising sea levels, increasing storm intensity, and consequent severe compound flooding events are degrading coastal ecosystems and threatening coastal dwellers. Consequently, people living near the coast require environmental intelligence in the form of reliable short-term and long-term predictions in order to anticipate, prepare for, adapt to, resist, and recover from hazards. Risk-informed decision making is crucial, but for the resulting information to be actionable, it must be effectively and promptly communicated to planners, decision makers and emergency managers in readily understood terms and formats. The information, critical to forecasts of extreme weather and flooding, as well as long-term projections of future risks, must involve synergistic interplay between observations and models. In addition to serving data for assimilation into models, the observations are also essential for objective validation of models via hind casts. Linked observing and modeling programs that involve stakeholder input and integrate engineering, environmental, and community vulnerability are needed to evaluate conditions prior to and following severe storm events, to update baselines, and to plan for future changes over the long term. In contrast to most deep-sea phenomena, coastal vulnerabilities are locally and regionally specific and prioritization of the most important observational data and model predictions must rely heavily on input from local and regional communities and decision makers. Innovative technologies and nature-based solutions are already helping to reduce vulnerability from coastal hazards in some localities but more focus on local circumstances, as opposed to global solutions, is needed. Agile and spatially distributed response capabilities will assist operational organizations in predicting, preparing for and mitigating potential community-wide disasters. This white paper outlines the rationale, synthesizes recent literature and summarizes some data-driven approaches to coastal resilience.

Present-Day Distribution and Potential Spread of the Invasive Green Alga Avrainvillea amadelpha Around the Main Hawaiian Islands

Veazey L, Williams O, Wade R, Toonen R, Spalding HL. Present-Day Distribution and Potential Spread of the Invasive Green Alga Avrainvillea amadelpha Around the Main Hawaiian Islands. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00402/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Algal assemblages are critical components of marine ecosystems from the intertidal to mesophotic depths; they act as primary producers, nutrient cyclers, and substrate providers. Coral reef ecosystems can be disrupted by stressors such as storm events, effluent inundation, sudden temperature shifts, and non-native invaders. Avrainvillea amadelpha is an invasive green alga that was first recorded in the main Hawaiian Islands on the west shore of Oahu and has continued to be of concern due to its extreme competitiveness with native algae and seagrasses. It has spread rapidly across the island of Oahu, decreasing the biodiversity of the benthos from shorelines to ∼90 m depth. We employed a boosted regression tree modeling framework to identify highly vulnerable regions prone to invasion. Our model indicated that regions exposed to minimal bottom currents and at least five degree heating weeks are particularly susceptible to A. amadelpha colonization. Additionally, we extrapolated our model to the main Hawaiian Islands and forecasted how a 25% increase in statewide annual maximum degree heating weeks may change habitat suitability for A. amadelpha. Across all islands, we identified particularly vulnerable “hotspot” regions of concern for resource managers and conservationists. This manuscript demonstrates the utility of this approach for identifying priority regions for invasive species management in the face of a changing climate.

ROV Observations on Reproduction by Deep-Sea Cephalopods in the Central Pacific Ocean

Vecchione M. ROV Observations on Reproduction by Deep-Sea Cephalopods in the Central Pacific Ocean. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00403/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Telepresence-enabled operations by remotely operated vehicles (ROVs) allow many researchers a unique perspective on morphology, behavior, and small-scale distributions of deep-sea animals. I present some examples of cephalopod natural history from recent ROV dives in the central Pacific Ocean. These examples include clues to reproductive behavior of deep-sea squids and cirrate “dumbo” octopods. During March 7–12, 2017, the ROV Deep Discoverer (D2) operating from NOAA Ship Okeanos Explorer recorded high-definition video of several squid in the genus Chiroteuthis. These included a mature male, a mature female, and a moribund squid identifiable as C. picteti. The female had obviously mated, with spermatangia implanted in many locations, and was holding in its arms another squid that appeared to be another Chiroteuthis. Considered together, these observations may indicate a deep-sea spawning aggregation and, possibly, sexual cannibalism. Another series of observations by D2 revealed eggs of cirrate octopods attached to octocorals. The remarkable thing about these observations was that in two of them (March 18 and May 4) the egg chorion had swollen and burst the external egg capsule. This may explain how the hatching embryo is able to escape from the tough protective coating secreted by the oviducal gland of cirrates but not secreted by the better-known incirrate octopods.

Evaluating Ocean Literacy of Elementary School Students: Preliminary Results of a Cross-Cultural Study in the Mediterranean Region

Mogias A, Boubonari T, Realdon G, Previati M, Mokos M, Koulouri P, Cheimonopoulou MTh. Evaluating Ocean Literacy of Elementary School Students: Preliminary Results of a Cross-Cultural Study in the Mediterranean Region. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00396/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

A good understanding of the role and function of the ocean seems to be of paramount importance in recent years, constituting the basic tool for the promotion of healthy and sustainable marine environment, and a target area of the 2030 Agenda for Sustainable Development. In this study, the content knowledge of elementary school students (grades 3–6) in regards to ocean sciences issues was examined. A structured questionnaire was administered to 1004 students participating in a cross-cultural study from three Mediterranean countries (Italy, Croatia, and Greece). The results of the study indicated a rather moderate level of knowledge in the total sample, while slight differences were recorded among the three countries revealing common knowledge gains and misconceptions. Rasch analysis was applied to further evaluate the validity of the results, while the influence of certain demographics on students’ knowledge level was also investigated. This study concludes with a discussion of the implications on national curriculum development in elementary education level, in order to promote ocean literacy and to ensure protection and conservation of the Mediterranean Sea.

Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications

Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, DeGrandpre MD, Sosik HM, Church MJ, O’Brien TD, et al. Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00393/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Sustained ocean time series are critical for characterizing marine ecosystem shifts in a time of accelerating, and at times unpredictable, changes. They represent the only means to distinguish between natural and anthropogenic forcings, and are the best tools to explore causal links and implications for human communities that depend on ocean resources. Since the inception of sustained ocean observations, ocean time series have withstood many challenges, most prominently availability of uninterrupted funding and retention of trained personnel. This OceanObs’19 review article provides an overarching vision for sustained ocean time series observations for the next decade, focusing on the growing challenges of maintaining sustained ocean time series, including ship-based and autonomous coastal and open-ocean platforms, as well as remote sensing. In addition to increased diversification of funding sources to include the private sector, NGOs, and other groups, more effective engagement of stakeholders and other end-users will be critical to ensure the sustainability of ocean time series programs. Building a cohesive international time series network will require dedicated capacity to coordinate across observing programs and leverage existing infrastructure and platforms of opportunity. This review article outlines near-term observing priorities and technology needs; explores potential mechanisms to broaden ocean time series data applications and end-user communities; and describes current tools and future requirements for managing increasingly complex multi-platform data streams and developing synthesis products that support science and society. The actionable recommendations outlined herein ultimately form the basis for a robust, sustainable, fit-for-purpose time series network that will foster a predictive understanding of changing ocean systems for the benefit of society.

Observing the Oceans Acoustically

Howe BM, Miksis-Olds J, Rehm E, Sagen H, Worcester PF, Haralabus G. Observing the Oceans Acoustically. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00426/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Acoustics play a central role in humankind’s interactions with the ocean and the life within. Passive listening to ocean “soundscapes” informs us about the physical and bio-acoustic environment from earthquakes to communication between fish. Active acoustic probing of the environment informs us about ocean topography, currents and temperature, and abundance and type of marine life vital to fisheries and biodiversity related interests. The two together in a multi-purpose network can lead to discovery and improve understanding of ocean ecosystem health and biodiversity, climate variability and change, and marine hazards and maritime safety. Passive acoustic monitoring (PAM) of sound generated and utilized by marine life as well as other natural (wind, rain, ice, seismics) and anthropogenic (shipping, surveys) sources, has dramatically increased worldwide to enhance understanding of ecological processes. Characterizing ocean soundscapes (the levels and frequency of sound over time and space, and the sources contributing to the sound field), temporal trends in ocean sound at different frequencies, distribution and abundance of marine species that vocalize, and distribution and amount of human activities that generate sound in the sea, all require passive acoustic systems. Acoustic receivers are now routinely acquiring data on a global scale, e.g., Comprehensive Nuclear-Test-Ban Treaty Organization International Monitoring System hydroacoustic arrays, various regional integrated ocean observing systems, and some profiling floats. Judiciously placed low-frequency acoustic sources transmitting to globally distributed PAM and other systems provide: (1) high temporal resolution measurements of large-scale ocean temperature/heat content variability, taking advantage of the inherent integrating nature of acoustic travel-time data using tomography; and (2) acoustic positioning (“underwater GPS”) and communication services enabling basin-scale undersea navigation and management of floats, gliders, and AUVs. This will be especially valuable in polar regions with ice cover. Routine deployment of sources during repeat global-scale hydrographic ship surveys would provide high spatial coverage snapshots of ocean temperatures. To fully exploit the PAM systems, precise timing and positioning need to be broadly implemented. Ocean sound is now a mature Global Ocean Observing System (GOOS) “essential ocean variable,” which is one crucial step toward providing a fully integrated global multi-purpose ocean acoustic observing system.

Global Observational Needs and Resources for Marine Biodiversity

Canonico G, Buttigieg PLuigi, Montes E, Muller-Karger FE, Stepien C, Wright D, Benson A, Helmuth B, Costello M, Sousa-Pinto I, et al. Global Observational Needs and Resources for Marine Biodiversity. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00367/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The diversity of life in the sea is critical to the health of ocean ecosystems that support living resources and therefore essential to the economic, nutritional, recreational, and health needs of billions of people. Yet there is evidence that the biodiversity of many marine habitats is being altered in response to a changing climate and human activity. Understanding this change, and forecasting where changes are likely to occur, requires monitoring of organism diversity, distribution, abundance, and health. It requires a minimum of measurements including productivity and ecosystem function, species composition, allelic diversity, and genetic expression. These observations need to be complemented with metrics of environmental change and socio-economic drivers. However, existing global ocean observing infrastructure and programs often do not explicitly consider observations of marine biodiversity and associated processes. Much effort has focused on physical, chemical and some biogeochemical measurements. Broad partnerships, shared approaches, and best practices are now being organized to implement an integrated observing system that serves information to resource managers and decision-makers, scientists and educators, from local to global scales. This integrated observing system of ocean life is now possible due to recent developments among satellite, airborne, and in situ sensors in conjunction with increases in information system capability and capacity, along with an improved understanding of marine processes represented in new physical, biogeochemical, and biological models.

Integrated Observations of Global Surface Winds, Currents, and Waves: Requirements and Challenges for the Next Decade

Bôas ABVillas, Ardhuin F, Ayet A, Bourassa MA, Brandt P, Chapron B, Cornuelle BD, Farrar JT, Fewings MR, Fox-Kemper B, et al. Integrated Observations of Global Surface Winds, Currents, and Waves: Requirements and Challenges for the Next Decade. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00425/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ocean surface winds, currents, and waves play a crucial role in exchanges of momentum, energy, heat, freshwater, gases, and other tracers between the ocean, atmosphere, and ice. Despite surface waves being strongly coupled to the upper ocean circulation and the overlying atmosphere, efforts to improve ocean, atmospheric, and wave observations and models have evolved somewhat independently. From an observational point of view, community efforts to bridge this gap have led to proposals for satellite Doppler oceanography mission concepts, which could provide unprecedented measurements of absolute surface velocity and directional wave spectrum at global scales. This paper reviews the present state of observations of surface winds, currents, and waves, and it outlines observational gaps that limit our current understanding of coupled processes that happen at the air-sea-ice interface. A significant challenge for the coming decade of wind, current, and wave observations will come in combining and interpreting measurements from (a) wave-buoys and high-frequency radars in coastal regions, (b) surface drifters and wave-enabled drifters in the open-ocean, marginal ice zones, and wave-current interaction “hot-spots,” and (c) simultaneous measurements of absolute surface currents, ocean surface wind vector, and directional wave spectrum from Doppler satellite sensors.

Pages