Freely-available Literature

Currently indexing 4063 freely-available titles

The following titles are freely-available, or include a link to a preprint or postprint.

Spatially congruent sites of importance for global shark and ray biodiversity

Derrick DH, Cheok J, Dulvy NK. Spatially congruent sites of importance for global shark and ray biodiversity Halliday WDavid. PLOS ONE [Internet]. 2020 ;15(7):e0235559. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235559
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Many important areas identified for conservation priorities focus on areas of high species richness, however, it is unclear whether these areas change depending on what aspect of richness is considered (e.g. evolutionary distinctiveness, endemicity, or threatened species). Furthermore, little is known of the extent of spatial congruency between biodiversity measures in the marine realm. Here, we used the distribution maps of all known marine sharks, rays, and chimaeras (class Chondrichthyes) to examine the extent of spatial congruency across the hotspots of three measures of species richness: total number of species, evolutionarily distinct species, and endemic species. We assessed the spatial congruency between hotspots considering all species, as well as on the subset of the threatened species only. We consider three definitions of hotspot (2.5%, 5%, and 10% of cells with the highest numbers of species) and three levels of spatial resolution (1°, 4°, and 8° grid cells). Overall, we found low congruency among all three measures of species richness, with the threatened species comprising a smaller subset of the overall species patterns irrespective of hotspot definition. Areas of congruency at 1° and 5% richest cells contain over half (64%) of all sharks and rays and occurred off the coasts of: (1) Northern Mexico Gulf of California, (2) USA Gulf of Mexico, (3) Ecuador, (4) Uruguay and southern Brazil, (5) South Africa, southern Mozambique, and southern Namibia, (6) Japan, Taiwan, and parts of southern China, and (7) eastern and western Australia. Coarsening resolution increases congruency two-fold for all species but remains relatively low for threatened measures, and geographic locations of congruent areas also change. Finally, for pairwise comparisons of biodiversity measures, evolutionarily distinct species richness had the highest overlap with total species richness regardless of resolution or definition of hotspot. We suggest that focusing conservation attention solely on areas of high total species richness will not necessarily contribute efforts towards species that are most at risk, nor will it protect other important dimensions of species richness.

Ecological responses to blue water MPAs

Gilman E, Chaloupka M, Fitchett M, Cantrell DL, Merrifield M. Ecological responses to blue water MPAs Patterson HM. PLOS ONE [Internet]. 2020 ;15(7):e0235129. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235129
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine protected areas (MPAs) can contribute to protecting biodiversity and managing ocean activities, including fishing. There is, however, limited evidence of ecological responses to blue water MPAs. We conducted the first comprehensive evaluation of impacts on fisheries production and ecological responses to pelagic MPAs of the Pacific Remote Islands Marine National Monument. A Bayesian time series-based counterfactual modelling approach using fishery-dependent data was used to compare the temporal response in the MPAs to three reference regions for standardized catch rates, lengths, trophic level of the catch and species diversity. Catch rates of bigeye tuna, the main target species (Kingman/Palmyra MPA, causal effect probability >99% of an 84% reduction; 95% credible interval: -143%, -25%), and blue shark (Johnston MPAs, causal effect probability >95%) were significantly lower and longnose lancetfish significantly higher (Johnston MPAs, causal effect probability >95%) than predicted had the MPAs not been established, possibly from closing areas near shallow features, which aggregate pelagic predators, and from ‘fishing-the-line’. There were no apparent causal impacts of the MPAs on species diversity, lengths and trophic level of the catch, perhaps because the MPAs were young, were too small, did not contain critical habitat for specific life-history stages, had been lightly exploited or experienced fishing-the-line. We also assessed model-standardized catch rates for species of conservation concern and mean trophic level of the catch within and outside of MPAs. Displaced effort produced multi-species conflicts: MPAs protect bycatch hotspots and hotspots of bycatch-to-target catch ratios for some at-risk species, but coldspots for others. Mean trophic level of the catch was significantly higher around MPAs, likely due to the aggregating effect of the shallow features and there having been light fishing pressure within MPAs. These findings demonstrate how exploring a wide range of ecological responses supports evidence-based evaluations of blue water MPAs.

Toward elimination of unwanted catches using a 100 mm T90 extension and codend in demersal mixed fisheries

Robert M, Morandeau F, Scavinner M, Fiche M, Larnaud P. Toward elimination of unwanted catches using a 100 mm T90 extension and codend in demersal mixed fisheries Patterson HM. PLOS ONE [Internet]. 2020 ;15(7):e0235368. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235368
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Most European fishing fleets will need to drastically reduce their unwanted catches to comply with new rules of the common fisheries policy. A more practical way to avoid increasing on-board sorting time and issues linked to storage capacity is to prevent unwanted catches in the first place. We assessed the selectivity properties of an experimental fishing gear that combined a 100 mm T90 cylinder with 130 meshes in the extension and a 100 mm T90 codend of 33 meshes (experimental gear) compared to a 100 mm diamond mesh extension and codend (control gear) during commercial trips using twin trawls. Analysis of the relative size composition of catches indicated a significantly higher escapement of small fish of several target species (e.g. Lepidorhombus whiffiagonisMelanogrammus aeglefinusRaja spp, and Lophius spp) and non-target species (e.g. Capros aper and Gurnards spp) from the T90 experimental trawl compared to the control trawl (n = 49 hauls), resulting in a significant reduction of unwanted catches of Gadidae, Triglidae, and Caproidae. In contrast, non-negligible commercial losses of small grade target gadoid species were observed. Mixed general linear models showed that the proportion of ray, haddock and anglerfish retained per length class decreased with increased tow duration. The T90 experimental gear will perform at a commercial level when targeting monkfish, megrim, rays and large haddock, however fishers are not likely to use this gear when targeting smaller-bodied species such as cephalopods, small haddock, whiting (Merlangius merlangus) and hake (Merluccius merluccius), because the gear is likely to allow large numbers to escape. Selectivity studies often focus on a short list of target species; however, catches of non-target species under quota can be problematic for some fisheries. For example, under the implementation of the Landing Obligation catches of boarfish could choke the French whitefish demersal fisheries in the Celtic sea, as France has no national quota for that species. The device tested constitutes an efficient solution to mitigate catches for such non-target schooling fish.

Ecosystem services in the Swedish water-energy-food-land-climate nexus: Anthropogenic pressures and physical interactions

van den Heuvel L, Blicharska M, Masia S, Sušnik J, Teutschbein C. Ecosystem services in the Swedish water-energy-food-land-climate nexus: Anthropogenic pressures and physical interactions. Ecosystem Services [Internet]. 2020 ;44:101141. Available from: https://www.sciencedirect.com/science/article/pii/S2212041620300838
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Traditionally, challenges of natural resource management have been addressed with a sectoral policy approach. However, it is increasingly recognised that different sectors are interconnected in a complex and mutually interacting system. A nexus approach is proposed to identify synergies and trade-offs between sectors and to foster the sustainable and efficient use of resources, particularly in light of climate change. The nexus approach has led to studies identifying interactions between policy objectives across nexus sectors, but the physical interactions between nexus sectors that can be the result of policy interactions, have received less attention. Nevertheless, such interactions can have severe consequences for the environment, affecting ecosystems and the services they provide. Integrating the nexus approach and the ecosystem service concept may help to better understand pressures and impacts related to a resource nexus and to address trade-offs. In this study, literature and expert assessment are used to analyse the water-energy-food-land-climate nexus in Sweden through the lens of the ecosystem services concept to gain insights into interactions between the nexus sectors. By demonstrating how anthropogenic pressures originating from the nexus sectors affect ecosystem functions and services, this paper serves as a foundation to further inform policy making (within and outside Sweden) when considering the water-energy-food-land-climate nexus.

Assessing restoration priorities for high-risk ecosystems: An application of the IUCN Red List of Ecosystems

Etter A, Andrade A, Nelson CR, Cortés J, Saavedra K. Assessing restoration priorities for high-risk ecosystems: An application of the IUCN Red List of Ecosystems. Land Use Policy [Internet]. 2020 ;99:104874. Available from: https://www.sciencedirect.com/science/article/pii/S0264837719322550
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Land clearing and ecosystem degradation are primary causes of loss of biodiversity and ecosystem services worldwide, putting at risk sustainable options for Earth and humankind. According to recent global estimates, degraded lands already account for at least 1 and up to 6 billion ha. Given high rates of habitat degradation and loss of biodiversity in human-dominated landscapes with high levels of ecosystem transformation, conventional approaches to conservation such as setting aside lands in protected areas, are not enough; in combination with ecosystem protection, ecological restoration is essential to ensure the conservation of biodiversity and delivery of ecosystem services. Despite recognition of the role of ecological restoration, the planning of restoration at the landscape scale remains a major challenge. Specifically, more studies are needed on developing restoration plans that maximize conservation and provisioning of ecosystem services, while minimizing competition with high-productivity land uses. We use Colombia, one of the world’s mega-diversity countries in which ca. 25 % of ecosystems are listed as critically endangered (CR), as a test case for exploring the potential advantages of including the Red List of Ecosystems, a newly developed tool for assessing conservation value, in restoration planning. We identified restoration priorities focused on both high-risk ecosystems and low-productivity lands, to maximize conservation value and minimize land-use conflicts. This approach allowed us to identify over 6 M ha of priority areas for restoration, targeting the restoration of 31 (75 %) of the country’s endangered ecosystems. Eight of the Regional Administrative Environmental Planning Areas (CARs) had greater than 20 % of their area identified as restoration priorities. We roughly estimated that the cost of restoring the prioritized areas with restoration through natural regeneration, using payment for ecosystem services (PES), would equal less than 50 % of the annual budget of the CARs. Our results are in sharp contrast (only 12 % agreement) with the priorities identified under the current National Restoration Strategy of Colombia, and highlight the potential contribution of the Red List of Ecosystems in refining and improving restoration planning strategies at both national and sub-national levels.

Semi-probabilistic coastal flood impact analysis: From deterministic hazards to multi-damage model impacts

Duo E, Fernández-Montblanc T, Armaroli C. Semi-probabilistic coastal flood impact analysis: From deterministic hazards to multi-damage model impacts. Environment International [Internet]. 2020 ;143:105884. Available from: https://www.sciencedirect.com/science/article/pii/S0160412020318390
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coastal flood impact assessments are important tools for risk management and are performed by combining the hazard component with the vulnerability of exposed assets, to quantify consequences (or impacts) in terms of relative or absolute (e.g. financial) damage. The process generates uncertainties that should be taken into account for the correct representation of the consequences of floods. This study presents a coastal flood impact application at the spatial level of the Stavanger municipality (Norway), based on a multi-damage model approach able to represent impacts, and their overall uncertainty. Hazard modelling was performed using the LISFLOOD-FP code, taking into account historical extreme water level events (1988–2017) and relative sea level rise scenarios. Direct impacts were calculated in the form of relative and financial damage for different building categories, using flood damage curves. The results showed that the expected impacts are fewer than 50 flooded receptors and less than €1 million in damage in the current sea level scenario. The impacts could double by the end of the century, considering the most optimistic relative sea level scenario. The results were discussed considering the limitations of the approach for both hazard and impact modelling, that will be improved in future implementations. The outcome of this study may be useful for cost–benefit analyses of mitigation actions and local-scale plans for adaptation.

Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea

Ding Y, Han M, Wu Z, Zhang R, Li A, Yu K, Wang Y, Huang W, Zheng X, Mai B. Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea. Environment International [Internet]. 2020 ;143:105919. Available from: https://www.sciencedirect.com/science/article/pii/S0160412020318742
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Environmental exposure to organophosphate esters (OPEs) continues to be a concern. Little is known about their bioaccumulation and trophodynamics, especially in tropical food webs. This study collected seawater and fifteen types of organism from a tropical ecosystem, South China Sea, to investigate the species-specific compositional, bioaccumulation, and trophic transfer of OPEs. The total concentrations of 11 target OPEs (ng/g dw) in the organisms decreased with the increase of their trophic levels in the order: phytoplankton (922) > zooplankton (660) > oysters (309) > crabs (225) > coral tissues (202) > fishes (58.2). The composition profiles (relative abundances) of OPEs were different among the species of organisms, which is likely affected by metabolism and the physicochemical property of OPEs. The trophic biomagnification of tripentyl phosphate (TPTP) in the pelagic food web was unexpected and requires further investigation. The trophic magnification factors (TMFs) of OPEs were generally lower in this tropical aquatic food web than in temperate and frigid aquatic food web. Our analysis suggests that there is a significant positive linear correlation between latitude and TMF. Intakes of OPEs through the consumption of the seafood involved in this work does not pose health risk to adults.

Scenarios for Global Aquaculture and Its Role in Human Nutrition

Gephart JA, Golden CD, Asche F, Belton B, Brugère C, Froehlich HE, Fry JP, Halpern BS, Hicks CC, Jones RC, et al. Scenarios for Global Aquaculture and Its Role in Human Nutrition. Reviews in Fisheries Science & Aquaculture [Internet]. 2020 :1 - 17. Available from: https://www.tandfonline.com/doi/full/10.1080/23308249.2020.1782342#.Xwi1G7bQtqc.linkedin
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Global demand for freshwater and marine foods (i.e., seafood) is rising and an increasing proportion is farmed. Aquaculture encompasses a range of species and cultivation methods, resulting in diverse social, economic, nutritional, and environmental outcomes. As a result, how aquaculture develops will influence human wellbeing and environmental health outcomes. Recognition of this has spurred a push for nutrition-sensitive aquaculture, which aims to benefit public health through the production of diverse, nutrient-rich seafood and enabling equitable access. This article explores plausible aquaculture futures and their role in nutrition security using a qualitative scenario approach. Two dimensions of economic development – the degree of globalization and the predominant economic development philosophy – bound four scenarios representing systems that are either localized or globalized, and orientated toward maximizing sectoral economic growth or to meeting environmental and equity dimensions of sustainability. The potential contribution of aquaculture in improving nutrition security is then evaluated within each scenario. While aquaculture could be “nutrition-sensitive” under any of the scenarios, its contribution to addressing health inequities is more likely in the economic and political context of a more globally harmonized trade environment and where economic policies are oriented toward social equity and environmental sustainability.

New insights into the hydrogeology and groundwater flow in the Great Barrier Reef catchment, Australia, revealed through 3D modelling

Shishaye HA, Tait DR, Befus KM, Maher DT, Reading MJ. New insights into the hydrogeology and groundwater flow in the Great Barrier Reef catchment, Australia, revealed through 3D modelling. Journal of Hydrology: Regional Studies [Internet]. 2020 ;30:100708. Available from: https://www.sciencedirect.com/science/article/pii/S2214581820301828
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Study region

The Great Barrier Reef catchment is located adjacent to the world's largest coral reef system, the Great Barrier Reef, in eastern Queensland, Australia.

Study focus

This study characterized the geologic and hydrogeologic settings and evaluated the influence of regional faults on groundwater flow. 3D geological models of six regions within the catchment were constructed using drill-log data from >49,000 wells, digital elevation models and surface geological maps. The 3D models were then integrated with potentiometric surface maps and faults data to conceptualize the hydraulic relationships of aquifer units and estimate groundwater development potentials. Potentiometric surfaces and fault orientations were used to conceptualize groundwater flow directions.

New hydrological insights for the region

The 3D geological and hydrogeological characterizations revealed previously unknown faults and aquifer units in the study area. The study found that the central regions consisted of fractured and porous-unconfined aquifers, while confined aquifers, which extend to the coast and likely beyond, were also found in the northern and southern most regions. The orientations of the faults trended in NW-SE directions and could form conduits for south-easterly groundwater flow as opposed to the predominate easterly flow in the porous-unconfined and confined aquifers. The 3D models, aquifer connectivities and geometries provided crucial information to determine groundwater development potentials and offer a first step in developing local and regional groundwater flow and contaminant transport models.

An evaluation of the public’s Knowledge, Attitudes and Practices (KAP) in Trinidad and Tobago regarding sharks and shark consumption

Ali L, Grey E, Singh D, Mohammed A, Tripathi V, Gobin J, Ramnarine I. An evaluation of the public’s Knowledge, Attitudes and Practices (KAP) in Trinidad and Tobago regarding sharks and shark consumption Finkelstein ME. PLOS ONE [Internet]. 2020 ;15(6):e0234499. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0234499
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

There is a global lack of data concerning shark consumption trends, consumer attitudes, and public knowledge regarding sharks. This is the case in Trinidad and Tobago, where shark is a popular culinary delicacy. A Knowledge, Attitudes, and Practices (KAP) survey was conducted in Trinidad and Tobago. Six hundred and seven questionnaires were administered. Univariate and stepwise multivariate logistic regressions were performed to test the association between KAP and demographic categories. The response rate was 93.4% with 567 questionnaires returned (473 from Trinidad and 94 from Tobago). Two hundred and seventeen (38.3%) participants were knowledgeable, 422 (74.4%) displayed attitudes in favour of shark conservation and sustainable use, and 270 (47.6%) displayed practices promoting shark conservation and sustainable use. Island (AOR = 2.81, CI = 1.78, 4.46) and tertiary education (AOR = 2.31, CI = 1.20, 4.46) significantly influenced knowledge level. Gender (AOR = 1.50, CI = 1.02, 2.20) and island (AOR = 0.56, CI = 0.35, 0.90) significantly influenced attitude. Gender (COR = 1.59, CI = 1.14, 2.22) was significantly associated with practices. Over 70% of respondents ate shark, and 54.7% ate shark infrequently enough to avoid risks from heavy metal toxicity. Our results may be useful to develop public awareness and practice improvement initiatives in order to improve KAP regarding shark meat consumption.

Habitat zonation on coral reefs: Structural complexity, nutritional resources and herbivorous fish distributions

Oakley-Cogan A, Tebbett SB, Bellwood DR. Habitat zonation on coral reefs: Structural complexity, nutritional resources and herbivorous fish distributions Patterson HM. PLOS ONE [Internet]. 2020 ;15(6):e0233498. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233498
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Distinct zonation of community assemblages among habitats is a ubiquitous feature of coral reefs. The distribution of roving herbivorous fishes (parrotfishes, surgeonfishes and rabbitfishes) is a particularly clear example, with the abundance of these fishes generally peaking in shallow-water, high-energy habitats, regardless of the biogeographic realm. Yet, our understanding of the factors which structure this habitat partitioning, especially with regards to different facets of structural complexity and nutritional resource availability, is limited. To address this issue, we used three-dimensional photogrammetry and structure-from-motion technologies to describe five components of structural complexity (rugosity, coral cover, verticality, refuge density and field-of-view) and nutritional resource availability (grazing surface area) among habitats and considered how these factors are related to herbivorous fish distributions. All complexity metrics (including coral cover) were highest on the slope and crest. Nutritional resource availability differed from this general pattern and peaked on the outer-flat. Unexpectedly, when compared to the distribution of herbivorous fishes, none of the complexity metrics had a marked influence in the models. However, grazing surface area was a strong predictor of both the abundance and biomass of herbivorous fishes. The strong relationship between grazing surface area and herbivorous fish distributions indicates that nutritional resource availability may be one of the primary factors driving the distribution of roving herbivorous fishes. The lack of a relationship between complexity and herbivorous fishes, and a strong affinity of herbivorous fishes for low-complexity, algal turf-dominated outer-flat habitats, offers some cautious optimism that herbivory may be sustained on future, low-complexity, algal turf-dominated reef configurations.

Operationalizing Ocean Health: Toward Integrated Research on Ocean Health and Recovery to Achieve Ocean Sustainability

Franke A, Blenckner T, Duarte CM, Ott K, Fleming LE, Antia A, Reusch TBH, Bertram C, Hein J, Kronfeld-Goharani U, et al. Operationalizing Ocean Health: Toward Integrated Research on Ocean Health and Recovery to Achieve Ocean Sustainability. One Earth [Internet]. 2020 ;2(6):557 - 565. Available from: https://www.sciencedirect.com/science/article/pii/S2590332220302499
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Protecting the ocean has become a major goal of international policy as human activities increasingly endanger the integrity of the ocean ecosystem, often summarized as “ocean health.” By and large, efforts to protect the ocean have failed because, among other things, (1) the underlying socio-ecological pathways have not been properly considered, and (2) the concept of ocean health has been ill defined. Collectively, this prevents an adequate societal response as to how ocean ecosystems and their vital functions for human societies can be protected and restored. We review the confusion surrounding the term “ocean health” and suggest an operational ocean-health framework in line with the concept of strong sustainability. Given the accelerating degeneration of marine ecosystems, the restoration of regional ocean health will be of increasing importance. Our advocated transdisciplinary and multi-actor framework can help to advance the implementation of more active measures to restore ocean health and safeguard human health and well-being.

A Global Review of Vessel Collisions With Marine Animals

Schoeman RP, Patterson-Abrolat C, Plön S. A Global Review of Vessel Collisions With Marine Animals. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00292/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Concern about the effects of maritime vessel collisions with marine animals is increasing worldwide. To date, most scientific publications on this topic have focused on the collisions between large vessels and large whales. However, our review found that at least 75 marine species are affected, including smaller whales, dolphins, porpoises, dugongs, manatees, whale sharks, sharks, seals, sea otters, sea turtles, penguins, and fish. Collision incidents with smaller species are scarce, likely as a result of reporting biases. Some of these biases can be addressed through the establishment of species-specific necropsy protocols to ensure reliable identification of collision-related injury, particularly blunt force trauma. In addition, creating a ship strike database for smaller species can assist in identifying the species most frequently involved in collisions, identifying high-risk areas, and determining species-specific relationships between vessel speed and lethal injury. The International Whaling Commission database on collisions with large whales provides a good example of this type of database and its potential uses. Prioritizing the establishment of a species-specific necropsy protocol and a database for smaller species as well as the identification of high-risk areas for species other than large whales, would be a valuable step toward the mitigation of collisions with smaller species.

Pathways of Pelagic Connectivity: Eukrohnia hamata (Chaetognatha) in the Arctic Ocean

DeHart HM, Blanco-Bercial L, Passacantando M, Questel JM, Bucklin A. Pathways of Pelagic Connectivity: Eukrohnia hamata (Chaetognatha) in the Arctic Ocean. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00396/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The dramatic warming of the Arctic Ocean will impact pelagic ecosystems in complex ways, including shifting patterns of species distribution and abundance, and altering migration pathways and population connectivity. Species of the Phylum Chaetognatha (arrow worms) are abundant in the zooplankton assemblage and are highly effective predators, with key roles in pelagic food webs. They are useful indicator species for impacts of climate change on marine ecosystems. This study examined the population genetic diversity, structure and connectivity of the chaetognath, Eukrohnia hamata, based on sampling from six regions defined by geography, bathymetry, and major currents flowing through the Arctic Ocean. A 528-base pair sequenced region of mitochondrial cytochrome oxidase I (mtCOI) analyzed for 131 specimens resulted in 78 haplotypes and very high haplotype diversity. Analysis of mtCOI haplotype frequencies provided no evidence of population genetic structure. Genomic Single Nucleotide Polymorphisms (SNPs) detected from the same specimens by double-digest Restriction-site Associated Digestion (ddRAD) confirmed high levels of gene flow among the regions, but supported the genetic distinctiveness of two population clusters: Atlantic–Arctic versus Pacific–Arctic. Removal of SNPs subject to selection resulted in slightly higher probability of three clusters, and suggested the possibility of local adaptation of regional populations of E. hamata. Comparative analysis revealed evidence that random selection of subsets of SNPs, perhaps impacted by different ecological and (micro) evolutionary drivers, can result in marked differences in numbers and distributional patterns of clusters and associated variation in F-statistics. Analysis of population connectivity using SNPs supported the primary migration pathway via flow from the Atlantic to the Pacific Arctic regions.

Behavior and Bio-Interactions of Anthropogenic Particles in Marine Environment for a More Realistic Ecological Risk Assessment

Corsi I, Bergami E, Grassi G. Behavior and Bio-Interactions of Anthropogenic Particles in Marine Environment for a More Realistic Ecological Risk Assessment. Frontiers in Environmental Science [Internet]. 2020 ;8. Available from: https://www.frontiersin.org/articles/10.3389/fenvs.2020.00060/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1359578_25_Enviro_20200623_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Owing to production, usage, and disposal of nano-enabled products as well as fragmentation of bulk materials, anthropogenic nanoscale particles (NPs) can enter the natural environment and through different compartments (air, soil, and water) end up into the sea. With the continuous increase in production and associated emissions and discharges, they can reach concentrations able to exceed toxicity thresholds for living species inhabiting marine coastal areas. Behavior and fate of NPs in marine waters are driven by transformation processes occurring as a function of NP intrinsic and extrinsic properties in the receiving seawaters. All those aspects have been overlooked in ecological risk assessment. This review critically reports ecotoxicity studies in which size distribution, surface charges and bio−nano interactions have been considered for a more realistic risk assessment of NPs in marine environment. Two emerging and relevant NPs, the metal-based titanium dioxide (TiO2), and polystyrene (PS), a proxy for nanoplastics, are reviewed, and their impact on marine biota (from planktonic species to invertebrates and fish) is discussed as a function of particle size and surface charges (negative vs. positive), which affect their behavior and interaction with the biological material. Uptake of NPs is related to their nanoscale size; however, in vivo studies clearly demonstrated that transformation (agglomerates/aggregates) occurring in both artificial and natural seawater drive to different exposure routes and biological responses at cellular and organism level. Adsorption of single particles or agglomerates onto the body surface or their internalization in feces can impair motility and affect sinking or floating behavior with consequences on populations and ecological function. Particle complex dynamics in natural seawater is almost unknown, although it determines the effective exposure scenarios. Based on the latest predicted environmental concentrations for TiO2 and PS NPs in the marine environment, current knowledge gaps and future research challenges encompass the comprehensive study of bio−nano interactions. As such, the analysis of NP biomolecular coronas can enable a better assessment of particle uptake and related cellular pathways leading to toxic effects. Moreover, the formation of an environmentally derived corona (i.e., eco-corona) in seawater accounts for NP physical–chemical alterations, rebounding on interaction with living organisms and toxicity.

Advancing Through the Pandemic From the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities

Pardo JCF, Ramon D, Stefanelli-Silva G, Elegbede I, Lima LS, Principe SC. Advancing Through the Pandemic From the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00528/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ongoing COVID-19 pandemic has brought about a new social and academic reality to researchers worldwide. The field of marine science, our own topic of interest, has also been impacted in multiple ways, from cancelation of laboratory and field activities to postponement of onboard research. As graduate researchers, we have a time-sensitive academic path, and our current situation may constrain our academic future. At the same time, the pandemic demands revised strategies to deal with the ongoing difficulties and tackle similar future situations. In this perspective, we have gathered information on the challenges, solutions and opportunities for graduate researchers in the field of marine science by (1) discussing the relevant short-, long-term challenges caused by the pandemic, (2) providing feasible immediate and near-future solutions, (3) compiling opportunities (courses, scientific events, academic positions), and (4) creating a shared social media account to make the available information on new opportunities more accessible. With this, we hope to add to the efforts to advance the academic career of marine graduates during this harsh period.

Review of Coast and Marine Ecosystems in Temperate Australia Demonstrates a Wealth of Ecosystem Services

Gaylard S, Waycott M, Lavery P. Review of Coast and Marine Ecosystems in Temperate Australia Demonstrates a Wealth of Ecosystem Services. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00453/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Temperate Australia has extensive and diverse coast and marine habitats throughout its inshore and offshore waters. The region includes the southernmost extent of mangroves, over 500 estuaries and coastal embayments, home to extensive meadows of seagrasses and tidal saltmarsh. In areas of hard substrate, rocky reefs are abundant and productive with large forests of macroalgae. Coastal regions can be densely populated by humans and often habitats can be degraded, polluted or lost, while some remain relatively isolated and pristine. These habitats provide services to society including provision of food, regulate our climate through sequestration of carbon, treating our waste and protecting our shorelines from damage from storms. Coastal areas are culturally importantly hubs for recreation and tourism. Habitat mapping demonstrates diverse habitats throughout temperate Australia, but a formal investigation of services provided by these habitats has been lacking. This review of ecosystem services provided by coast and marine environments throughout temperate Australia reveals vast and productive ecosystems that provide multiple ecosystem services, substantial value to the Australian economy and contribute to the health and well-being of people who live in, visit of benefit from services or products from these regions. Some of these are considered within traditional economic metrics such as provision of wild catch fisheries, but this review demonstrates that regulation and maintenance services including waste treatment and protecting shorelines from extreme events are under recognized, and their value is substantial. However, consistent with many locations globally, coast and marine habitats are under threat from increasing development, sewage, agricultural, industrial discharges, urban runoff and climate change. Resultantly, temperate Australian coast and marine habitat extent and condition is generally declining in many regions, putting the provision of services and benefits to the community at risk. Continued degraded or lost habitats indicate current management frameworks are not capturing the full risk from development and there are winners and losers in trade off decision making. Incorporating ecosystem services in decision making may allow an integrated approach to management, and acknowledgment of services provided could prevent habitats from being undervalued against economic and social interests, a practice that often results in environmental degradation.

Novel Insights Into Gas Embolism in Sea Turtles: First Description in Three New Species

Crespo-Picazo JL, Parga M, de Quirós YBernaldo, Monteiro D, Marco-Cabedo V, Llopis-Belenguer C, García-Párraga D. Novel Insights Into Gas Embolism in Sea Turtles: First Description in Three New Species. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00442/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The recent finding of gas embolism (GE) and decompression sickness (DCS) in loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea challenged the conventional understanding of marine vertebrate diving physiology. Additionally, it brought to light a previously unknown source of mortality associated with fisheries bycatch for this vulnerable species. In this paper, we use ultrasonography to describe GE in a leatherback sea turtle (Dermochelys coriacea), a green sea turtle (Chelonia mydas), and an olive ridley sea turtle (Lepidochelys olivacea) from accidental capture in a gillnet, bottom trawl, and pair-bottom trawl, respectively. This is the first description of this condition in these three species worldwide. These cases of GE suggest that this may be a threat faced by all sea turtle species globally.

Connecting Crabs, Currents, and Coastal Communities: Examining the Impacts of Changing Ocean Conditions on the Distribution of U.S. West Coast Dungeness Crab Commercial Catch

Magel CL, Lee EMJ, Strawn AM, Swieca K, Jensen AD. Connecting Crabs, Currents, and Coastal Communities: Examining the Impacts of Changing Ocean Conditions on the Distribution of U.S. West Coast Dungeness Crab Commercial Catch. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00401/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Dungeness crab (Cancer magister) is one of the most lucrative fisheries on the United States (U.S.) west coast. There have been large spatial and temporal fluctuations in catch, which reflect the interconnected influences of the coupled natural-human fishery system. Changing ocean conditions are likely to further alter the magnitude and distribution of Dungeness crab catch, the impacts of which will propagate ecologically and through the social systems of fishing communities. Therefore, the effect of changing ocean conditions on U.S. west coast Dungeness crab catch per unit effort (CPUE) was used as an interdisciplinary case study to examine the susceptibility, a metric that integrates Dungeness crab reliance and social vulnerability indices, of coastal communities to changes in the fishery. Statistical models indicated that ocean conditions influence commercial CPUE 3–5 years later and that CPUE is likely to decline in the future as ocean conditions change. In particular, sea surface temperature scenarios for 2080 (+1.7 and +2.8°C) reduced Dungeness crab CPUE by 30–100%, depending on fishing port latitude. Declines in Dungeness crab CPUE were greater for southern port communities than for northern port communities under both scenarios – demonstrating greater exposure at the southern end of the species range. We show that U.S. west coast communities are differentially susceptible to a decline in Dungeness crab catch, with Washington communities being at least five times more susceptible than California communities. Our overall assessment showed varying levels of risk (a combination of exposure and susceptibility) for Dungeness crab fishing ports that do not necessarily align with regional or fishery management boundaries.

The Status of Coastal Benthic Ecosystems in the Mediterranean Sea: Evidence From Ecological Indicators

Bevilacqua S, Katsanevakis S, Micheli F, Sala E, Rilov G, Sarà G, Malak DAbdul, Abdulla A, Gerovasileiou V, Gissi E, et al. The Status of Coastal Benthic Ecosystems in the Mediterranean Sea: Evidence From Ecological Indicators. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00475/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Mediterranean Sea is subject to multiple human pressures increasingly threatening its unique biodiversity. Spatially explicit information on the ecological status of marine ecosystems is therefore key to an effective maritime spatial planning and management, and to help the achievement of environmental targets. Here, we summarized scientific data on the ecological status of a selection of marine ecosystems based on a set of ecological indicators in more than 700 sites of the Mediterranean Sea. For Posidonia oceanica seagrass beds, rocky intertidal fringe, and coastal soft bottoms, more than 70% of investigated sites exhibited good to high ecological conditions. In contrast, about two-thirds of sites for subtidal rocky reefs were classified to be in moderate to bad conditions, stressing the need for prioritizing conservation initiatives on these productive and diverse environments. Very little quantitative information was available for the southern Mediterranean Sea, thus monitoring programs and assessments in this area are essential for a representative assessment of the health of marine coastal ecosystems in the whole basin. This overview represents a first step to implement a baseline that, through georeferenced data on ecological status, could help identifying information gaps, directing future research priorities, and supporting improvements to spatial models of expected cumulative impacts on marine ecosystems.

Pages