Aquaculture, Seafood, and Food Security

Can we locate shrimp aquaculture areas from space? – A case study for Thailand

Dorber M, Verones F, Nakaoka M, Sudo K. Can we locate shrimp aquaculture areas from space? – A case study for Thailand. Remote Sensing Applications: Society and Environment [Internet]. 2020 ;20:100416. Available from: https://www.sciencedirect.com/science/article/pii/S2352938520301415?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Globally, shrimp aquaculture has undergone a rapid development in the last decades, as it can help to satisfy the increasing food demand of a growing population. However, shrimp production can be accompanied by environmental impacts, such as land cover changes associated with pond construction, or the degradation of coastal areas through pollution. Environmental footprinting, has proven to be a valuable tool for tracing environmental impacts from human consumption back to their location and sector of origin. Here, we focus on the land footprint, which quantifies the area of required land resources to satisfy human consumption (of shrimp production). However, today’s footprinting tools often lack spatially explicit land cover information for land footprint assessments. In this study we developed a new method, which allows us to identify the land cover change caused by shrimp pond construction in Thailand without using sample shrimp pond shape polygons as input data. We use the global water surface explorer (using globally 3 million Landsat 5 TM, Landsat 7 ETM and Landsat 8 OLI images, acquired between 1984 and 2015), aerial photographs and land cover maps in combination with known aquaculture locations, to identify water areas in Thailand that have a high likelihood to be a shrimp pond and to assess the corresponding land cover change. We estimated that in 2015 an area of 377 km2 had a high likelihood of being shrimp pond water area. Further, we show that the construction of shrimp ponds in Thailand was responsible for the transformation of 552 km2 primary habitat, such as mangrove areas. Our results support the environmental footprint assessment of shrimp ponds in Thailand, while our proposed method allows identifying possible shrimp pond areas on a global scale.

A Global Overview of Restorative Shellfish Mariculture

Carranza A, Ermgassen PSE zu. A Global Overview of Restorative Shellfish Mariculture. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00722/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1437459_45_Marine_20200922_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Farming of marine organisms (mariculture) represented 36% of global aquaculture, with mollusks representing 58.8% in live weight. Mollusk populations in some locations are, however, threatened by degradation of the ecosystems and/or over-fishing. This threat is increasingly being addressed through Restorative Shellfish Mariculture (RSM), as opposed to mariculture alone. There is no general consensus in the literature on what can and cannot be considered RSM. While maximization of benefits other than provisioning services is often considered a prerequisite, in other cases the maximization of fisheries yields is prioritized. Here we define RSM as the farming of marine shellfish, implying some form of intervention during the species life cycle, in order to address negative socio-ecological issues arising from the unsustainable use of marine ecosystems, independent of the final ownership regime of the resource. Strategies for developing RSM were reviewed and classified along a gradient from the most conservation-oriented (e.g., habitat restoration, reintroduction of locally extinct endangered species), to the most fisheries-oriented (including some forms of fisheries enhancement), and classified as Non-hatchery Dependent or Hatchery Dependent strategies. We reviewed the targeted species and strategies implemented across 584 individual projects developed in the last decades in North America, Europe, Asia, Oceania and South America. We found that some 48 species, including 34 bivalves and 15 gastropods were targets of RSM in 34 countries. US projects accounted for ca. three quarters of the total (N = 438), with Philippines, Japan and Australia also being home to a large number. More than 90% of the projects involved five species, namely the eastern oyster (Crassostrea virginicaN = 379), the giant clam (Tridacna gigas, N = 65), the Olympia oyster (Ostrea luridaN = 25), the bay scallop (Argopecten irradiansN = 25) and the hard clam (Mercenaria mercenaria, N = 15). Of the RSM projects, 51% used Non-hatchery dependent methods, mostly habitat restoration providing substrata for settlement, whereas some 49% involved hatcheries. 3% of the projects combined both methods. This review provides an overview of the breadth, depth and aims of RSM globally, develops a broad definition of the activity, and proposes a structure for classifying RSM.

Extending New Zealand’s Marine Shellfish Aquaculture Into Exposed Environments – Adapting to Modern Anthropogenic Challenges

Heasman KG, Scott N, Ericson JA, Taylor DI, Buck BH. Extending New Zealand’s Marine Shellfish Aquaculture Into Exposed Environments – Adapting to Modern Anthropogenic Challenges. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.565686/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1437459_45_Marine_20200922_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

New Zealand has a large exclusive economic zone (EEZ) of which the area between the 30 and 50 m bathymetric zone offers the most prospects for shellfish production. Only 0.3% of this zone would be required to increase New Zealand’s shellfish production by 150,000 t. The Enabling Open Ocean Aquaculture Program, funded by the New Zealand Ministry of Business, Innovation and Employment, is a collaboration aiming to develop technologies that will enable the extension of aquaculture into New Zealand’s harsh and challenging open ocean conditions, and facilitate adaptation to the escalating effects of climate change in inner shore environments. New Zealand has started expanding aquaculture into exposed environments, allowing farm expansion to meet increasing demand for aquaculture products but also enabling ventures into new aquatic products. Expansion into offshore developments is in direct response to mounting stakeholder interaction in inshore coastal areas. This document presents a brief overview of the potential zones for open ocean aquaculture, the influence of climate change, and two potential shellfish operational systems that may facilitate the expansion of shellfish aquaculture onto New Zealand’s exposed ocean sites.

Struggling over shellfish: How diverging perceptions of marine nature distort deliberative governance

de Koning S, Steins NA, Toonen HM. Struggling over shellfish: How diverging perceptions of marine nature distort deliberative governance. Ocean & Coastal Management [Internet]. 2020 ;198:105384. Available from: https://www.sciencedirect.com/science/article/pii/S0964569120302921?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Deliberative governance is gaining increasing attention in the management of natural resources with conflicting stakes. Although disputed knowledge is known to affect deliberation, the role of perceptions is understudied. Based on a case study in the Dutch Wadden Sea, a marine protected area, we examine the social representations of shellfish fisheries and marine nature of stakeholders within one deliberative governance arrangement, the Mussel Covenant. Our results show that within this covenant there are two opposing social representations of marine nature which both are not in line with the agreed objectives. Instead, governmental policies still form the guidelines to covenant decisions. We conclude that diverging representations and state-influence decrease deliberation. Therefore, we argue that deliberative governance is not possible without explicitly considering the different cognitive, normative and expressive meanings attached to the marine area or issue at stake. To achieve deliberation, values of stakeholders should explicitly be acknowledged and discussed, and state-influence should be kept to a minimum.

Acoustic Telemetry: A Tool to Monitor Fish Swimming Behavior in Sea-Cage Aquaculture

Muñoz L, Aspillaga E, Palmer M, Saraiva JL, Arechavala-Lopez P. Acoustic Telemetry: A Tool to Monitor Fish Swimming Behavior in Sea-Cage Aquaculture. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00645/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Acoustic telemetry techniques are very useful tools to monitor in detail the swimming behavior and spatial use of fish in artificial rearing environments at individual and group levels. We evaluated the feasibility of using passive acoustic telemetry to monitor fish welfare in sea-cage aquaculture at an industrial scale, characterizing for the first time the diel swimming and distribution patterns of gilthead seabream (Sparus aurata) at fine-scale. Ten fish were implanted with acoustic tags equipped with pressure and acceleration sensors, and monitored in a commercial-size sea-cage for a period of 1 month. Overall, fish exhibited clear differences in day vs. night patterns both on swimming activity and vertical distribution throughout the experiment. Space use increased at night after the implementation of structural environmental enrichment in the sea-cage. Acoustic telemetry may represent an advancement to monitor fish farming procedures and conditions, helping to promote fish welfare and product quality.

Temporal Changes in Microbial Communities Beneath Fish Farm Sediments Are Related to Organic Enrichment and Fish Biomass Over a Production Cycle

Quero GMarina, Ape F, Manini E, Mirto S, Luna GMarco. Temporal Changes in Microbial Communities Beneath Fish Farm Sediments Are Related to Organic Enrichment and Fish Biomass Over a Production Cycle. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00524/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The marine fish farming industry is growing at a significant rate, yet a number of concerns still remain with regards to environmental impacts on the surrounding coastal sea and its biota. Here, we assessed the impact of intensive farming on benthic prokaryotic communities at a Mediterranean sea bass and sea bream intensive aquaculture site over a period of 10 months, in relation to the increase in fish biomass within the cage together with the organic matter enrichment in the sediments. We report positive relationships between prokaryotic abundance and both organic matter and fish biomass, and a contextual decrease in prokaryotic diversity below the cages. A significant shift in microbial community composition occurred in fish farm sediments (FF) over time, indicating a likely impact of ongoing aquaculture activity on prokaryotic communities. Among the dominant taxa at the impacted site, we found Epsilonproteobacteria and Bacteroidetes, which showed a general increase with fish biomass. Analyses on specialist taxa underlined significant contributions of Clostridiales and Bacteroidales in the farmed sediments. Finally, sea bream and sea bass gut microbiome-related taxa were detected during the sampling period. Our results indicate that prokaryotic community composition underneath the cages is related to fish biomass and organic enrichment over the course of production, and confirms that the study of benthic microbial communities at aquaculture sites represents a useful tool to assess the impact of intensive mariculture on the surrounding environment.

Food safety during seaweed cultivation at offshore wind farms: An exploratory study in the North Sea

Banach JL, van den Burg SWK, van der Fels-Klerx HJ. Food safety during seaweed cultivation at offshore wind farms: An exploratory study in the North Sea. Marine Policy [Internet]. 2020 ;120:104082. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X20301500
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Multi-use in ocean space, and seas, entails the co-location of different industries or technologies and their corresponding activities that take place at the same time in a specific location. This concept focuses on finding solutions to tackle global challenges in food security. However, the effects that seaweed cultivation at offshore wind farms may have on food and feed safety are less readily addressed. This study examined whether currently available food and feed safety standards for seaweed can be applied to multi-use activities at sea. The focus was on the combined use of seaweed cultivation at an offshore wind farm in the North Sea. Literature regarding hazards in seaweed was screened, and standards were evaluated. Expert elicitation on seaweed cultivation was retrieved via in-depth interviews and a workshop. Results showed that although some food safety hazards may be more apparent for seaweed cultivation such as toxic metals (e.g., arsenic, cadmium) and iodine, others may become relevant when considering multi-use (e.g., allergens, polycyclic aromatic hydrocarbons, toxic metabolites). Key factors for food safety include the location of seaweed cultivation, handling and processing of seaweed, and seaweed testing. Public standards, the Food Safety System Certification 22000 standard, and the Marine Stewardship Council/Aquaculture Stewardship Council standard are recommended for the food and marine sectors to consider when determining standards to implement. This case study provides an example of how to address seaweed food and feed safety in a multi-use scenario in the North Sea. We recommend additional case studies for other multi-use at sea scenarios.

Community structure of actively growing bacteria in a coastal fish-farming area

Taniguchi A, Eguchi M. Community structure of actively growing bacteria in a coastal fish-farming area Hewitt J. PLOS ONE [Internet]. 2020 ;15(6):e0235336. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235336
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In fish-farming areas, copious amounts of organic matter are released into the surrounding environment. Although it is well-known that bacterial community structures and activities are tightly coupled with organic conditions in the environment, actively growing bacteria (AGB) species that are responsible are still largely unknown. Here, we determined seasonal variations in the community structures of free-living and particle-attached AGB in surface and bottom seawater, and also in the easily resuspendable sediment boundary layer. Accordingly, we used bromodeoxyuridine (BrdU) magnetic bead immunocapture and PCR-denaturing gradient gel electrophoresis (BUMP-DGGE) analysis. Whereas overall bacterial communities in the resuspendable sediment were quite different from those of the free-living and particle-attached bacteria, the AGB community structures were similar among them. This result suggests that sediment resuspension in aquaculture environments functions as an organic source for bacteria in the water column, and that bacterial species contributing to the environmental capacity and carbon cycle are limited. We identified 25 AGB phylotypes, belonging to Alphaproteobacteria (Roseobacter clade, nine phylotypes), Gammaproteobacteria (five phylotypes), Deltaproteobacteria (one phylotype), Bacteroidetes (seven phylotypes), and Actinobacteria (three phylotypes). Among them, some AGB phylotypes appeared throughout the year with high frequency and were also identified in other coastal environments. This result suggests that these species are responsible for the environmental capacity and carbon cycle, and are key species in this fish-farming area, as well as other coastal environments.

Scenarios for Global Aquaculture and Its Role in Human Nutrition

Gephart JA, Golden CD, Asche F, Belton B, Brugère C, Froehlich HE, Fry JP, Halpern BS, Hicks CC, Jones RC, et al. Scenarios for Global Aquaculture and Its Role in Human Nutrition. Reviews in Fisheries Science & Aquaculture [Internet]. 2020 :1 - 17. Available from: https://www.tandfonline.com/doi/full/10.1080/23308249.2020.1782342#.Xwi1G7bQtqc.linkedin
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Global demand for freshwater and marine foods (i.e., seafood) is rising and an increasing proportion is farmed. Aquaculture encompasses a range of species and cultivation methods, resulting in diverse social, economic, nutritional, and environmental outcomes. As a result, how aquaculture develops will influence human wellbeing and environmental health outcomes. Recognition of this has spurred a push for nutrition-sensitive aquaculture, which aims to benefit public health through the production of diverse, nutrient-rich seafood and enabling equitable access. This article explores plausible aquaculture futures and their role in nutrition security using a qualitative scenario approach. Two dimensions of economic development – the degree of globalization and the predominant economic development philosophy – bound four scenarios representing systems that are either localized or globalized, and orientated toward maximizing sectoral economic growth or to meeting environmental and equity dimensions of sustainability. The potential contribution of aquaculture in improving nutrition security is then evaluated within each scenario. While aquaculture could be “nutrition-sensitive” under any of the scenarios, its contribution to addressing health inequities is more likely in the economic and political context of a more globally harmonized trade environment and where economic policies are oriented toward social equity and environmental sustainability.

What Is Gill Health and What Is Its Role in Marine Finfish Aquaculture in the Face of a Changing Climate?

Foyle KL, Hess S, Powell MD, Herbert NA. What Is Gill Health and What Is Its Role in Marine Finfish Aquaculture in the Face of a Changing Climate?. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00400/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

It is hard to find a definition of gill health in the literature although there is a lot of information on changes to gill structure as a result of infectious and non-infectious challenge. How these changes relate to overall fish health is sometimes not clear. Interaction between the gill, the fish, and a range of anticipated changes in the environment will have a currently unknown effect on marine health and aquaculture production. To a degree, fish will likely be able to ameliorate certain changes, such as compensating for slightly elevated carbon dioxide; however, these actions may come at the cost of compromising other functions such as osmoregulation. Compensation will also depend on gill epithelial health and other environmental factors like external nitrogen and ammonia sources which can rise depending on the direction future culture and levels of eutrophication take. Fish can also remodel gill structure in response to salinity, hypoxia, or acidification but it appears that increased temperatures may be associated with increased pathology observable in the gill, and certain fishes may be more susceptible to change. There is a need for more targeted research into climate change-specific gill physiology and a need to recognise gill health as being a key component of food security and not just fish health.

Pages

Subscribe to RSS - Aquaculture, Seafood, and Food Security