Arctic

Warm Arctic, increased winter sea-ice growth?

Petty AA, Holland MM, Bailey DA, Kurtz NT. Warm Arctic, increased winter sea-ice growth?. Geophysical Research Letters [Internet]. 2018 . Available from: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018GL079223
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $38.00
Type: Journal Article

We explore current variability and future projections of winter Arctic sea ice thickness and growth using data from climate models and satellite observations. Winter ice thickness in the Community Earth System Model's Large Ensemble (CESM‐LE) compare well against thickness estimates from the Pan‐Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) and CryoSat‐2, despite some significant regional differences ‐ e.g. a high thickness bias in CESM‐LE in the western Arctic. Differences across the available CryoSat‐2 thickness products hinder more robust validation efforts. We assess the importance of the negative conductive feedback of sea ice growth (thinner ice grows faster) by regressing October atmosphere/ice/ocean conditions against winter ice growth. Our regressions demonstrate the importance of a strong negative conductive feedback process in our current climate, that increases winter growth for thinner initial ice, but indicate that later in the 21st century this negative feedback is overwhelmed by variations in the fall atmosphere/ocean state.

Current practices and knowledge supporting oil spill risk assessment in the Arctic

Wenning RJ, Robinson H, Bock M, Rempel-Hester MAnn, Gardiner W. Current practices and knowledge supporting oil spill risk assessment in the Arctic. Marine Environmental Research [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S0141113617306773
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Oil spill response (OSR) in the Arctic marine environment conducted as part of operational planning and preparedness supporting exploration and development is most successful when knowledge of the ecosystem is readily available and applicable in an oil spill risk assessment framework. OSR strategies supporting decision-making during the critical period after a spill event should be explicit about the environmental resources potentially at risk and the efficacy of OSR countermeasures that best protect sensitive and valued resources. At present, there are 6 prominent methods for spill impact mitigation assessment (SIMA) in the Arctic aimed at supporting OSR and operational planning and preparedness; each method examines spill scenarios and identifies response strategies best suited to overcome the unique challenges posed by polar ecosystems and to minimize potential long-term environmental consequences. The different methods are grounded in classical environmental risk assessment and the net environmental benefit analysis (NEBA) approach that emerged in the 1990s after the Exxon Valdez oil spill. The different approaches share 5 primary assessment elements (oil physical and chemical properties, fate and transport, exposure, effects and consequence analysis). This paper highlights how the different Arctic methods reflect this common risk assessment framework and share a common need for oil spill science relevant to Arctic ecosystems. An online literature navigation portal, developed as part of the 5-year Arctic Oil Spill Response Technologies Joint Industry Programme, complements the different approaches currently used in the Arctic by capturing the rapidly expanding body of scientific knowledge useful to evaluating exposure, vulnerability and recovery of the Arctic ecosystem after an oil spill.

Sustainable Shipping in a Changing Arctic: Challenges for the Establishment of Marine Protected Areas in Response to Arctic Marine Operations and Shipping

McCreath M, Brigham LW. Sustainable Shipping in a Changing Arctic: Challenges for the Establishment of Marine Protected Areas in Response to Arctic Marine Operations and Shipping. In: Hildebrand LP, Brigham LW, Johansson TM Cham: Springer International Publishing; 2018. pp. 297 - 322. Available from: https://link.springer.com/chapter/10.1007/978-3-319-78425-0_17
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $29.95
Type: Book Chapter

Increasing Arctic marine use is driven primarily by natural resource development and greater marine access throughout the Arctic Ocean created by profound sea ice retreat. Significant management measures to enhance protection of Arctic people and the marine environment are emerging, including the development of marine protected areas (MPAs) which may be effective and valuable tools. MPAs have been established by individual Arctic coastal states within their respective national jurisdictions; however, a pan-Arctic network of MPAs has yet to be established despite Arctic Council deliberations. This overview focuses on those MPAs that can be designated by the International Maritime Organization and by international instrument or treaty to respond to increasing Arctic marine operations and shipping. Key challenges remain in the Arctic to the introduction of select MPAs and development of a circumpolar network of MPAs in response to greater marine use: the variability of sea ice; the rights and concerns of indigenous people; a lack of marine infrastructure; application to the Central Arctic Ocean; establishing effective monitoring; and, compliance and enforcement in remote polar seas. Robust bilateral and multilateral cooperation will be necessary not only to establish effective MPAs but also to sustain them for the long term. Reducing the large Arctic marine infrastructure gap will be a key requirement to achieve effective MPA management and attain critical conservation goals.

Societal Impacts of a Rapidly Changing Arctic

Stephen K. Societal Impacts of a Rapidly Changing Arctic. Current Climate Change Reports [Internet]. 2018 . Available from: http://link.springer.com/10.1007/s40641-018-0106-1
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

This review article makes six observations about the current body of research on the societal impacts of a changing Arctic. First, climate change and globalisation are the dominant drivers of societal impacts in the Arctic. Second, many contributions focus on the impacts in concrete sectors of society, often from an opportunities-and-risks perspective, which tends to blur the boundary to more policy-oriented work. Third, the mantra of the sustainable development of the Arctic or Arctic sustainability pervades considerations of Arctic societal impacts. Fourth, societal and environment change in the Arctic is increasingly analysed using the image of the Global Arctic, highlighting the inextricable linkages between Arctic and global processes and systems and thus the entangled fate of the North and the entire globe. Fifth, an increasing number of actors is seen as being involved in societal and environmental transformations in the Arctic, often conveyed through the (often ill-defined) stakeholder concept. Sixth, Arctic indigenous peoples are depicted as the group most vulnerable to the societal impacts of a changing Arctic, but are increasingly the subject of research in the form of rights-holders and active participants in governance, law, politics, and research. Challenges for future research include achieving greater clarity and reflexivity around key concepts, and de-essentialising the Arctic via the use of comparative methods on cases both within and beyond the Arctic.

Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions

Fang C, Zheng R, Zhang Y, Hong F, Mu J, Chen M, Song P, Lin L, Lin H, Le F, et al. Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere [Internet]. In Press ;209:298 - 306. Available from: https://www.sciencedirect.com/science/article/pii/S0045653518311767
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $41.95
Type: Journal Article

The seafloor is recognized as one of the major sinks for microplastics (MPs). However, to date there have been no studies reported the MP contamination in benthic organisms from the Arctic and sub-Arctic regions. Therefore, this study provided the first data on the abundances and characteristics of MPs in a total of 413 dominant benthic organisms representing 11 different species inhabiting in the shelf of Bering and Chukchi Seas. The mean abundances of MP uptake by the benthos from all sites ranged from 0.02 to 0.46 items g−1 wet weight (ww) or 0.04–1.67 items individual−1, which were lower values than those found in other regions worldwide. The highest value appeared at the northernmost site, implying that the sea ice and the cold current represent possible transport mediums. Interestingly, the predator A. rubens ingested the maximum quantities of MPs, suggesting that the trophic transfer of MPs through benthic food webs may play a critical role. Fibers constituted the major type (87%) in each species, followed by film (13%). The colors of fibers were classified as red (46%) and transparent (41%), and the film was all gray. The predominant composition was polyamide (PA) (46%), followed by polyethylene (PE) (23%), polyester (PET) (18%) and cellophane (CP) (13%). The most common sizes of MPs concentrated in the interval from 0.10 to 1.50 mm, and the mean size was 1.45 ± 0.13 mm. Further studies about the temporal trends and detrimental effects of MPs remain to be carried out in benthic organisms from the Arctic and sub-Arctic regions.

Opening a new ocean: Arctic Ocean fisheries regime as a (potential) turning point for Canada’s Arctic policy

Landriault M. Opening a new ocean: Arctic Ocean fisheries regime as a (potential) turning point for Canada’s Arctic policy. International Journal: Canada's Journal of Global Policy Analysis [Internet]. 2018 ;73(1):158 - 165. Available from: http://journals.sagepub.com/doi/abs/10.1177/0020702018764753
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

This policy brief focuses on the opening of the Central Arctic Ocean and the subsequent questions this poses to regional governance. This change has the potential to radically alter the nature of Arctic governance as non-Arctic states will have to play a significant role in the rules that will apply in the Arctic high seas. Talks about a regional fisheries regime will define the future of this region. The creation of a coordinating agreement would have the benefit of not challenging Arctic states too fundamentally while at the same time incorporating non-Arctic states in a meaningful way in the regional governance infrastructure.

Arctic sea ice is an important temporal sink and means of transport for microplastic

Peeken I, Primpke S, Beyer B, Gütermann J, Katlein C, Krumpen T, Bergmann M, Hehemann L, Gerdts G. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nature Communications [Internet]. 2018 ;9(1). Available from: https://www.nature.com/articles/s41467-018-03825-5
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.

Diatoms in Arctic regions: Potential tools to decipher environmental changes

Miettinen A. Diatoms in Arctic regions: Potential tools to decipher environmental changes. Polar Science [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S1873965217301391
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

Paleoclimate research define the baselines for the natural climate change and is imperative to help us to set the recent observed changes in the long-term natural climate context. Fossil marine diatoms have proved to be an excellent tools for the paleoclimatic reconstructions, e.g. for the reconstruction of sea surface temperature (SST) and sea ice. A number of studies have been conducted from the northern high latitude region using diatoms as potential proxy. Nevertheless, these studies are scattered and thus there is a need to expand diatom research in the Arctic regions. Due to the possibilities offered by an emerging trend of diatom-based research, it is important to identify both the research themes and geographical areas of highest importance in order to obtain the best possible scientific outcome in the research. Here we review some of up-to-date diatom-based reconstruction methods applicable for paleoceanographic research for the northern North Atlantic and Arctic regions, and discuss the knowledge gaps in the Arctic research, which potentially can be solved by diatom applications. The modern diatom research has progressively concentrated on quantitative reconstruction based on diatoms and statistical transfer function providing the most useful data for the climate research. However, also qualitative reconstruction methods are still needed; the recent studies show that although the quantitative reconstruction method for SST appears to be statistically robust, there are uncertainties in quantitative reconstructions for sea-ice, and thus it is still recommended to use the Marginal Ice Zone diatom taxa as a qualitative reconstruction method for the Arctic sea ice. Diatom applications offer highly potential tools for filling the knowledge gaps in the Arctic research.

Vessel traffic in the Canadian Arctic: Management solutions for minimizing impacts on whales in a changing northern region

McWhinnie LH, Halliday WD, Insley SJ, Hilliard C, Canessa RR. Vessel traffic in the Canadian Arctic: Management solutions for minimizing impacts on whales in a changing northern region. Ocean & Coastal Management [Internet]. 2018 ;160:1 - 17. Available from: https://www.sciencedirect.com/science/article/pii/S0964569117309341
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Warming weather conditions in the Arctic are already resulting in changes in both sea ice extent and thickness. The resulting extended ‘open water’ season has many implications for vessel traffic and marine life. For example, an increase in vessel traffic due to ice-free waters will most likely lead to an increased risk of impact on cetaceans through increased noise pollution, strike risk for some cetacean species, and the possibility of exposure to chemical pollutants. The objective of this study was to pre-empt a predicted increase in vessels by investigating and exploring possible management scenarios, with the aim of mitigating negative impacts on locally important species such as bowhead and beluga whales. Utilizing insights gained from established vessel management schemes in more southerly regions, this paper evaluates the current suite of tools being implemented and their appropriateness for implementation in a more extreme Arctic environment.

Fisheries Enforcement on the High Seas of the Arctic Ocean: Gaps, Solutions and the Potential Contribution of the European Union and Its Member States

Papastavridis E. Fisheries Enforcement on the High Seas of the Arctic Ocean: Gaps, Solutions and the Potential Contribution of the European Union and Its Member States. The International Journal of Marine and Coastal Law [Internet]. 2018 . Available from: http://booksandjournals.brillonline.com/content/journals/10.1163/15718085-13320002
Freely available?: 
Yes
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $30.00
Type: Journal Article

Although there is no fishing activity within the central Arctic Ocean at present, commercial fishing activity does occur in the high seas areas of the North Atlantic and North Pacific, and within the exclusive economic zone of the Arctic coastal States. Climate change will most probably lead to an increase in fishing activity, through the reduction in sea ice, opening up new areas of the Arctic to fisheries, including the Central Arctic Ocean. This prospect has fuelled intensive negotiations—still ongoing—for the signing of a legally binding agreement to prevent unregulated fisheries therein. What seems missing, though, from both the ongoing negotiations on this agreement and the scholarly literature is reference to fisheries enforcement in the Arctic. Accordingly, this article identifies the most effective tools that could be employed for fisheries enforcement purposes, including port and flag State measures, and addresses their potential application in the Arctic.

Pages

Subscribe to RSS - Arctic