Citizen Science and Crowdsourcing

A cetacean monitoring system that integrates citizen science and satellite imagery

Vukelic M, Mancini F, Vukelic D, Carere C. A cetacean monitoring system that integrates citizen science and satellite imagery. Rendiconti Lincei. Scienze Fisiche e Naturali [Internet]. 2018 ;29(1):53 - 59. Available from: https://link.springer.com/article/10.1007/s12210-017-0657-4
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Various methods have been adopted for monitoring marine megafauna and cetaceans in particular. Most of them rely on direct observation and have strong limitations: they are expensive and time-consuming; they allow monitoring only at small spatial and temporal scales; they require specialised technical staff. Satellite imagery to detect and count marine mammals from the space has become feasible. In the last years, the spectral, spatial and temporal accuracy of very high resolution satellites have improved, allowing to conduct censuses and to produce valid population estimates for some species. With the appearance of Web 2.0, ubiquitous computing and the related technological advancements, the different networks enable the general public to contribute, disseminate and exchange information. The use of data collected by citizen science projects is now ubiquitous, but still presents some challenges that need to be addressed. A major issue is that data collected by the public must be validated. We present a model for real-time monitoring of cetaceans by combining the citizen science and satellite image processing with the main link defined as location–time.

Citizen science contributes to the understanding of the occurrence and distribution of cetaceans in southeastern Brazil – A case study

Lodi L, Tardin R. Citizen science contributes to the understanding of the occurrence and distribution of cetaceans in southeastern Brazil – A case study. Ocean & Coastal Management [Internet]. 2018 ;158:45 - 55. Available from: https://www.sciencedirect.com/science/article/pii/S0964569117305562
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Citizen Science projects involve ordinary people in scientific research, providing new insights and perspectives. Interested members of the public may contribute valuable information as they learn about wildlife in their local communities. This study investigates the spatiotemporal occurrence and distribution of cetaceans off the coast of Rio de Janeiro, Brazil, based on data obtained by citizen scientists (opportunistic observations - 2013/2016) and by cetacean researchers (dedicated observations - 2011/2016). The citizen scientists recorded 178 sightings of eight cetacean species along the whole Rio de Janeiro coast. Boat surveys (N = 118) were conducted by the authors in two Marine Protected Areas (MPA) and adjacent waters, resulting in a total of 77 records of four cetaceans species. Within the same area surveyed, citizen scientists contributed 98 reports of these four species. There was a high degree of information overlap, although the citizen scientists also expanded the database on the occurrence and distribution of cetaceans. The citizen scientists also confirmed the occurrence in the study area of four additional cetacean species, not recorded during the surveys. Opportunistic observations obtained from citizen scientists are thus a fundamentally important complementary tool for this type of investigation. The distribution records of the two datasets were also broadly compatible, in particular for the inshore sightings and the seasonal distribution of three of the four principal species. Overall, then, the data provided by from citizen scientists off the coast of Rio de Janeiro were validated by the boat surveys, which focused specifically on the area of the MPAs and adjacencies. The information provided by the combined dataset provides important insights for the creation of a buffer zone, which provide an additional layer of protection for the region's marine biota.

Spatial and Temporal Baseline Information on Marine Megafauna-Data Facilitated by a Wildlife Tour Operator

de Boer MNita, Jones D, Jones H, Knee R. Spatial and Temporal Baseline Information on Marine Megafauna-Data Facilitated by a Wildlife Tour Operator. Open Journal of Marine Science [Internet]. 2018 ;08(01):76 - 113. Available from: http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=81905
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The protection of marine megafauna within Europe is rather fragmented. Developing conservation measures for highly mobile species presents definite challenges, particularly due to the many knowledge gaps. Recent studies have shown that these gaps can be filled in by Platforms of Opportunity (PO) which create low-cost approaches. However, the number of wildlife tour operators actively collecting PO data related to distribution and relative abundance of marine fauna remains limited. In this study, we investigated whether effort-corrected data on marine megafauna facilitated by a wildlife tour operator afforded robust long temporal data (2011-2015). Sightings data, collected in the wider Mount’s Bay area (southwest Cornwall, UK), along with a GPS application, were collected to accurately record survey effort. In addition, radial sighting distances and detection curves were computed to explore the robustness of the data. Density maps of marine megafauna indicated that encounters occurred throughout the area in all three seasons but the temporal distribution was significantly different with numbers peaking in autumn. Odontocetes were mostly recorded during autumn, basking shark (Cetorhinus maximus) and ocean sunfish (Mola mola) were more abundant during summer and leatherback turtles (Dermochelys coriacea) were recorded occasionally. Our data showed that this shallow coastal environment is particularly important as a nursing area for harbour porpoises (Phocoena phocoena). Risso’s dolphins (Grampus griseus) showed a high semi-residency pattern for adults with calves within one core-habitat. As such, the study provides important spatial and temporal baseline data that are essential for the protection of marine megafauna through the development of an ecological network of marine protected areas within UK waters. Although, data facilitated by wildlife operators have certain shortcomings we highlight that the protocols developed here secured efficient and precise data. Such collection protocols can be implemented on a larger scale, ultimately enhancing research monitoring efforts and marine ecosystem management.

Seafarer citizen scientist ocean transparency data as a resource for phytoplankton and climate research

Seafarers SDisk, Lavender S, Beaugrand G, Outram N, Barlow N, Crotty D, Evans J, Kirby R. Seafarer citizen scientist ocean transparency data as a resource for phytoplankton and climate research MacKenzie BR. PLOS ONE [Internet]. 2017 ;12(12):e0186092. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186092
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The oceans’ phytoplankton that underpin the marine food chain appear to be changing in abundance due to global climate change. Here, we compare the first four years of data from a citizen science ocean transparency study, conducted by seafarers using home-made Secchi Disks and a free Smartphone application called Secchi, with contemporaneous satellite ocean colour measurements. Our results show seafarers collect useful Secchi Disk measurements of ocean transparency that could help future assessments of climate-induced changes in the phytoplankton when used to extend historical Secchi Disk data.

Can citizen science contribute to fish assemblages monitoring in understudied areas? The case study of Tunisian marine protected areas

Ben Lamine E, Di Franco A, romdhane MSalah, Francour P. Can citizen science contribute to fish assemblages monitoring in understudied areas? The case study of Tunisian marine protected areas. Estuarine, Coastal and Shelf Science [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S0272771416307442
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Resource monitoring is a key issue in ecosystem management especially for marine protected areas (MPAs), where information on the composition and structure of fish assemblages is crucial to design a suitable management process. Data on fish assemblage are usually collected using underwater visual censuses (UVC). However, fish assemblages monitoring in MPAs usually calls for considerable resources in terms of costs, time and technical/scientific skills. Financial resources and trained scientific divers may, however, not be available in certain geographical areas, that are thus understudied. Therefore, involving citizen volunteer divers in fish assemblage monitoring and adopting easy-to-use underwater visual census methods could be an effective way to collect crucial data. Citizen science can be used only if it can provide information that is consistent with that collected using standard scientific monitoring. Here, we aim: 1) to compare the consistency of results from a Standard scientific UVC (S-UVC) and an Easy-to-use UVC (E-UVC) method in assessing fish assemblage spatial variability, and 2) to test the consistency of data collected by Scientific Divers (SD) and Scientifically-Trained Volunteer divers (STV), using E-UVC. We used, in two consecutive years, three Tunisian future Marine Protected Areas (MPAs) and adjacent areas as case studies. E-UVC and S-UVC data were consistent. Both methods reported the same spatial patterns for the three MPAs (between MPAs and, inside and outside each one), highlighting the consistency between S-UVC and E-UVC. No significant difference was recorded between data collected by SD or STV. Our results suggest that E-UVC can provide information representing simplified proxies for describing fish assemblages and can therefore be a valuable tool for fish monitoring by citizen divers in understudied areas. This evidence could foster citizen science as an effective tool to raise environmental awareness and involve stakeholders in resource management.

Advancing Citizen Science for Coastal and Ocean Research

Garcia-Soto C, van der Meeren GI, Busch JA, Delany J, Domegan C, Dubsky K, Fauville G, Gorsky G, von Juterzenka K, Malfatti F, et al. Advancing Citizen Science for Coastal and Ocean Research. Ostend, Belgium: European Marine Board; 2017. Available from: http://marineboard.eu/publication/advancing-citizen-science-coastal-and-ocean-research-position-paper
Freely available?: 
Yes
Summary available?: 
Yes
Type: Report

Citizen Science is an approach which involves members of the public in gathering scienti c data and, in more advanced cases, also involves them in the analysis of such data and in the design of scienti c research. Bene ts of this approach include enhancing monitoring capabilities, empowering citizens and increasing Ocean Literacy, which can itself lead to the development of environmentally-friendly behaviours. There is a long history of citizen participation in science as a general concept. However, the process of studying and understanding the best ways to develop, implement, and evaluate Citizen Science is just beginning and it has recently been proposed that the study of the process and outcomes of Citizen Science merits acknowledgement as a distinct discipline in its own right.

Considering the vastness of the ocean, the extensiveness of the world’s coastlines, and the diversity of habitats, communities and species, a full scienti c exploration and understanding of this realm requires intensive research and observation activities over time and space. Citizen Science is a potentially powerful tool for the generation of scienti c knowledge to a level that would not be possible for the scienti c community alone. Additionally, Citizen Science initiatives should be promoted because of their bene ts in creating awareness of the challenges facing the world’s ocean and increasing Ocean Literacy.

Responding to this, the European Marine Board convened a Working Group on Citizen Science, whose main aim was to provide new ideas and directions to further the development of Marine Citizen Science, with particular consideration for the European context.

This position paper introduces the concept and rationale of Citizen Science, in particular regarding its relationship to marine research. The paper then explores European experiences of Marine Citizen Science, presenting common factors of success for European initiatives as examples of good practice. The types of data amenable to Citizen Science are outlined, along with concerns and measures relating to ensuring the scienti c quality of those data. The paper further explores the social aspects of participation in Marine Citizen Science, outlining the societal bene ts in terms of impact and education. The current and potential future role of technology in Marine Citizen Science projects is also addressed including, the relationship between citizens and earth observations, and the relevance of progress in the area of unmanned observing systems. The paper nally presents proposals for the improved integration and management of Marine Citizen Science on a European scale. This leads to a detailed discussion on Marine Citizen Science informing Marine Policy, taking into account the requirements of the Aarhus Convention as well as the myriad of EU marine and environmental policies.

The paper concludes with the presentation of eight Strategic Action Areas for Marine Citizen Science in Europe (see summary below with details in Chapter 4). These action areas, which are aimed not only at the marine research community, but also at scientists from multiple disciplines (including non-marine), higher education institutions, funding bodies and policy makers, should together enable coherent future Europe-wide application of Marine Citizen Science for the bene t of all.

Contribution of citizen science towards international biodiversity monitoring

Chandler M, See L, Copas K, Bonde AMZ, López BClaramunt, Danielsen F, Legind JKristoffer, Masinde S, Miller-Rushing AJ, Newman G, et al. Contribution of citizen science towards international biodiversity monitoring. Biological Conservation [Internet]. 2017 ;213:280 - 294. Available from: http://www.sciencedirect.com/science/article/pii/S0006320716303639
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

To meet collective obligations towards biodiversity conservation and monitoring, it is essential that the world's governments and non-governmental organisations as well as the research community tap all possible sources of data and information, including new, fast-growing sources such as citizen science (CS), in which volunteers participate in some or all aspects of environmental assessments. Through compilation of a database on CS and community-based monitoring (CBM, a subset of CS) programs, we assess where contributions from CS and CBM are significant and where opportunities for growth exist. We use the Essential Biodiversity Variable framework to describe the range of biodiversity data needed to track progress towards global biodiversity targets, and we assess strengths and gaps in geographical and taxonomic coverage. Our results show that existing CS and CBM data particularly provide large-scale data on species distribution and population abundance, species traits such as phenology, and ecosystem function variables such as primary and secondary productivity. Only birds, Lepidoptera and plants are monitored at scale. Most CS schemes are found in Europe, North America, South Africa, India, and Australia. We then explore what can be learned from successful CS/CBM programs that would facilitate the scaling up of current efforts, how existing strengths in data coverage can be better exploited, and the strategies that could maximise the synergies between CS/CBM and other approaches for monitoring biodiversity, in particular from remote sensing. More and better targeted funding will be needed, if CS/CBM programs are to contribute further to international biodiversity monitoring.

The Economy of Shark Conservation in the Northeast Pacific: The Role of Ecotourism and Citizen Science

Mieras PA, Harvey-Clark C, Bear M, Hodgin G, Hodgin B. The Economy of Shark Conservation in the Northeast Pacific: The Role of Ecotourism and Citizen Science. Elsevier; 2017. Available from: http://www.sciencedirect.com/science/article/pii/S0065288117300093
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $31.50
Type: Book

Historically sharks have been seen either as a source of income through harvesting, or as a nuisance and danger. The economic value of sharks has traditionally been measured as the total value of sharks caught for liver oil, fins, or meat for consumption. Sharks have also been killed to near extinction in cases where they were seen as a threat to fisheries on other species. This is illustrated by the mass extermination of Basking Sharks (Cetorhinus maximus) in British Columbia. They were seen as a nuisance to fishermen as they got entangled in gill nets during the salmon fishing season. However with the development of the SCUBA diving industry, and ecotourism in general, increased awareness of the role sharks play in marine ecosystems has resulted in changes in how they are perceived and utilized. Despite an ongoing harvest of sharks such as the North Pacific Spiny Dogfish (Squalus suckleyi), sharks now generate economic value through SCUBA diving enthusiasts who travel the globe to see, swim with, and photograph them. The use of digital cameras and other digital media has brought sharks into households around the world and increased awareness of the conservation issues facing many species. This renewed appreciation has led to a better understanding of sharks by the public, resulting in advocates calling for better protections and conservation. In particular, a growing part of the SCUBA diving community wants to contribute to conservation and research projects, which has led to participation in citizen science projects. These projects provide scientific data but also gain ground as ecotourism activities, thus adding to both economic value of tourism and conservation efforts.

Sharks in Captivity: The Role of Husbandry, Breeding, Education, and Citizen Science in Shark Conservation

Grassmann M, McNeil B, Wharton J. Sharks in Captivity: The Role of Husbandry, Breeding, Education, and Citizen Science in Shark Conservation. Elsevier; In Press. Available from: http://www.sciencedirect.com/science/article/pii/S0065288117300081
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $31.50
Type: Book

The role of public aquariums in promoting conservation has changed substantially over the decades, evolving from entertainment attractions to educational and research centres. In many facilities, larger sharks are an essential part of the collection and represent one of the biggest draws for the public. Displaying healthy elasmobranchs comes with many challenges, but improvements in husbandry techniques have enabled aquariums to have success with a variety of species. The establishment of organisations such as the Association of Zoos and Aquariums, and the completion of texts like the Elasmobranch Husbandry Manual, has helped set high standards of care for sharks in captivity and promoted international conservation efforts. Aquariums keeping sharks are in a unique position to influence local, regional, and international attitudes and policies by acting as both educational and research facilities. Interactions with multiple stakeholders of diverse educational and demographic backgrounds through the use of in-house advocacy, public outreach, media interviews, and partnerships with academic and government institutions enable these facilities to engage and share information with a broad audience. Although the data collected on sharks in captivity often cannot be directly translated to animals in the wild, it offers better insight into a number of life history traits and poorly understood behaviours, and has been the foundation for many captive breeding programs. Several Northeast Pacific (NEP) shark species are commonly displayed for long durations or bred in aquariums, while other less studied species have been held for short periods to collect valuable data that can be applied towards ongoing studies and conservation measures. Here, we discuss past and current tangible benefits of holding NEP sharks in captivity, as well as noting several ways in which future research and education activities will continue to inform and shape public opinions on shark management and conservation.

Making Waves: Marine Citizen Science for Impact

Schläppy M-L, Loder J, Salmond J, Lea A, Dean AJ, Roelfsema CM. Making Waves: Marine Citizen Science for Impact. Frontiers in Marine Science [Internet]. 2017 ;4. Available from: http://journal.frontiersin.org/article/10.3389/fmars.2017.00146/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The benefit of engaging volunteers in marine citizen science projects goes beyond generation of data and has intrinsic value with regards to community capacity-building and education. Yet, despite the documented benefits of citizen science, there can be barriers to the process of developing strategic citizen science projects and translating data into valued results with natural resource management applications. This paper presents four case-studies from fifteen years of Reef Check Australia (RCA) marine citizen science research and education projects. These case studies convey approaches and lessons-learned from the process of designing, implementing and sharing citizen science programs with the goal to create valuable social and environmental outcomes:

(1) Demonstrating citizen science data quality through a precision study on data and analysis of 15 years of standardized Reef Check (RC) reef health data in Queensland, Australia.

(2) Identifying and responding to data gaps through volunteer monitoring of sub-tropical rocky reefs in South East Queensland, Australia.

(3) Adapting citizen science protocols to enhance capacity building, partnerships and strategic natural resource management applications through reef habitat mapping.

(4) Tailoring new pathways for sharing citizen science findings and engaging volunteers with the community via a Reef Check Australia Ambassadors community outreach program.

These case studies offer insights into considerations for developing targeted and flexible citizen science projects, showcasing the work of volunteers and project stakeholders, and collaborating with partners for applications beneficial to research, management and education.

Pages

Subscribe to RSS - Citizen Science and Crowdsourcing