Climate Change, Ocean Acidification, and Ocean Warming

Impacts of the Changing Ocean-Sea Ice System on the Key Forage Fish Arctic Cod (Boreogadus Saida) and Subsistence Fisheries in the Western Canadian Arctic—Evaluating Linked Climate, Ecosystem and Economic (CEE) Models

Steiner NS, Cheung WWL, Cisneros-Montemayor AM, Drost H, Hayashida H, Hoover C, Lam J, Sou T, U. Sumaila R, Suprenand P, et al. Impacts of the Changing Ocean-Sea Ice System on the Key Forage Fish Arctic Cod (Boreogadus Saida) and Subsistence Fisheries in the Western Canadian Arctic—Evaluating Linked Climate, Ecosystem and Economic (CEE) Models. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00179/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

This study synthesizes results from observations, laboratory experiments and models to showcase how the integration of scientific methods and indigenous knowledge can improve our understanding of (a) past and projected changes in environmental conditions and marine species; (b) their effects on social and ecological systems in the respective communities; and (c) support management and planning tools for climate change adaptation and mitigation. The study links climate-ecosystem-economic (CEE) models and discusses uncertainties within those tools. The example focuses on the key forage species in the Inuvialuit Settlement Region (Western Canadian Arctic), i.e., Arctic cod (Boreogadus saida). Arctic cod can be trophically linked to sea-ice algae and pelagic primary producers and are key vectors for energy transfers from plankton to higher trophic levels (e.g., ringed seals, beluga), which are harvested by Inuit peoples. Fundamental changes in ice and ocean conditions in the region affect the marine ecosystem and fish habitat. Model simulations suggest increasing trends in oceanic phytoplankton and sea-ice algae with high interannual variability. The latter might be linked to interannual variations in Arctic cod abundance and mask trends in observations. CEE simulations incorporating physiological temperature limits data for the distribution of Arctic cod, result in an estimated 17% decrease in Arctic cod populations by the end of the century (high emission scenario), but suggest increases in abundance for other Arctic and sub-Arctic species. The Arctic cod decrease is largely caused by increased temperatures and constraints in northward migration, and could directly impact key subsistence species. Responses to acidification are still highly uncertain, but sensitivity simulations suggests an additional 1% decrease in Arctic cod populations due to pH impacts on growth and survival. Uncertainties remain with respect to detailed future changes, but general results are likely correct and in line with results from other approaches. To reduce uncertainties, higher resolution models with improved parameterizations and better understanding of the species' physiological limits are required. Arctic communities should be directly involved, receive tools and training to conduct local, unified research and food chain monitoring while decisions regarding commercial fisheries will need to be precautionary and adaptive in light of the existing uncertainties.

Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic

Saba GK, Goldsmith KA, Cooley SR, Grosse D, Meseck SL, A. Miller W, Phelan B, Poach M, Rheault R, StLaurent K, et al. Recommended priorities for research on ecological impacts of ocean and coastal acidification in the U.S. Mid-Atlantic. Estuarine, Coastal and Shelf Science [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S0272771418308710
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The estuaries and continental shelf system of the United States Mid-Atlantic are subject to ocean acidification driven by atmospheric CO2, and coastal acidification caused by nearshore and land-sea interactions that include biological, chemical, and physical processes. These processes include freshwater and nutrient input from rivers and groundwater; tidally-driven outwelling of nutrients, inorganic carbon, alkalinity; high productivity and respiration; and hypoxia. Hence, these complex dynamic systems exhibit substantial daily, seasonal, and interannual variability that is not well captured by current acidification research on Mid-Atlantic organisms and ecosystems. We present recommendations for research priorities that target better understanding of the ecological impacts of acidification in the U. S. Mid-Atlantic region. Suggested priorities are: 1) Determining the impact of multiple stressors on our resource species as well as the magnitude of acidification; 2) Filling information gaps on major taxa and regionally important species in different life stages to improve understanding of their response to variable temporal scales and sources of acidification; 3) Improving experimental approaches to incorporate realistic environmental variability and gradients, include interactions with other environmental stressors, increase transferability to other systems or organisms, and evaluate community and ecosystem response; 4) Determining the capacity of important species to acclimate or adapt to changing ocean conditions; 5) Considering multi-disciplinary, ecosystem-level research that examines acidification impacts on biodiversity and biotic interactions; and 6) Connecting potential acidification-induced ecological impacts to ecosystem services and the economy. These recommendations, while developed for the Mid-Atlantic, can be applicable to other regions will help align research towards knowledge of potential larger-scale ecological and economic impacts.

Scientific considerations for acidification monitoring in the U.S. Mid-Atlantic Region

Goldsmith KA, Lau S, Poach ME, Sakowicz GP, T. Trice M, C. Ono R, Nye J, Shadwick EH, StLaurent KA, Saba GK. Scientific considerations for acidification monitoring in the U.S. Mid-Atlantic Region. Estuarine, Coastal and Shelf Science [Internet]. 2019 . Available from: https://www.sciencedirect.com/science/article/pii/S0272771418308679
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Coastal and ocean acidification has the potential to cause significant environmental and societal impacts. Monitoring carbonate chemistry parameters over spatial and temporal scales is challenging, especially with limited resources. A lack of monitoring data can lead to a limited understanding of real-world conditions. Without such data, robust experimental and model design is challenging, and the identification and understanding of episodic acidification events is nearly impossible. We present considerations for resource managers, academia, and industry professionals who are currently developing acidification monitoring programs in the Mid-Atlantic region. We highlight the following considerations for deliberation: 1) leverage existing infrastructure to include multiple carbonate chemistry parameters as well as other water quality measurements, 2) direct monitoring efforts in subsurface waters rather than limiting monitoring to surface waters, 3) identify the best available sensor technology for long-term, in-situ monitoring, 4) monitor across a salinity gradient to account for the complexity of estuarine, coastal, and ocean environments, and identify potential areas of enhanced vulnerability, 5) increase sampling frequency to capture variability, 6) consider other drivers (e.g., freshwater discharge, nutrients, physiochemical parameters) that may affect acidification, and 7) conduct or continue monitoring in specific ecological and general regions that may have enhanced vulnerability. Through the incorporation of these considerations, individual monitoring programs can more efficiently and effectively leverage resources and build partnerships for a more comprehensive data collection in the region. While these considerations focus on the Mid-Atlantic region), similar strategies can be used to leverage resources in other locations.

Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes

Trainer VL, Moore SK, Hallegraeff G, Kudela RM, Clement A, Mardones JI, Cochlan WP. Pelagic harmful algal blooms and climate change: Lessons from nature’s experiments with extremes. Harmful Algae [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S1568988319300356
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Time series now have sufficient duration to determine harmful algal bloom (HAB) responses to changing climate conditions, including warming, stratification intensity, freshwater inputs and natural patterns of climate variability, such as the El Niño Southern Oscillation and Pacific Decadal Oscillation. Against the context of time series, such as those available from phytoplankton monitoring, dinoflagellate cyst records, the Continuous Plankton Recorder surveys, and shellfish toxin records, it is possible to identify extreme events that are significant departures from long-term means. Extreme weather events can mimic future climate conditions and provide a “dress rehearsal” for understanding future frequency, intensity and geographic extent of HABs. Three case studies of extreme HAB events are described in detail to explore the drivers and impacts of these oceanic outliers that may become more common in the future. One example is the chain-forming diatom of the genus Pseudo-nitzschia in the U.S. Pacific Northwest and its response to the 2014-16 northeast Pacific marine heat wave. The other two case studies are pelagic flagellates. Highly potent Alexandrium catenella group 1 dinoflagellate blooms (up to 150 mg/kg PST in mussels; 4 human poisonings) during 2012-17 created havoc for the seafood industry in Tasmania, south-eastern Australia, in a poorly monitored area where such problems were previously unknown. Early evidence suggests that changes in water column stratification during the cold winter-spring season are driving new blooms caused by a previously cryptic species. An expansion of Pseudochattonella cf. verruculosa to the south and A. catenella to the north over the past several years resulted in the convergence of both species to cause the most catastrophic event in the history of the Chilean aquaculture in the austral summer of 2016. Together, these two massive blooms were colloquially known as the “Godzilla-Red tide event”, resulting in the largest fish farm mortality ever recorded worldwide, equivalent to an export loss of USD$800 million which when combined with shellfish toxicity, resulted in major social unrest and rioting. Both blooms were linked to the strong El Niño event and the positive phase of the Southern Annular Mode, the latter an indicator of anthropogenic climate change in the southeastern Pacific region. For each of these three examples, representing recent catastrophic events in geographically distinct regions, additional targeted monitoring was employed to improve the understanding of the climate drivers and mechanisms that gave rise to the event and to document the societal response. Scientists must be poised to study future extreme HAB events as these natural experiments provide unique opportunities to define and test multifactorial drivers of blooms.

Greater vulnerability to warming of marine versus terrestrial ectotherms

Pinsky ML, Eikeset AMaria, McCauley DJ, Payne JL, Sunday JM. Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature [Internet]. 2019 ;569(7754):108 - 111. Available from: https://www.nature.com/articles/s41586-019-1132-4
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $32.00
Type: Journal Article

Understanding which species and ecosystems will be most severely affected by warming as climate change advances is important for guiding conservation and management. Both marine and terrestrial fauna have been affected by warming1,2 but an explicit comparison of physiological sensitivity between the marine and terrestrial realms has been lacking. Assessing how close populations live to their upper thermal limits has been challenging, in part because extreme temperatures frequently drive demographic responses3,4 and yet fauna can use local thermal refugia to avoid extremes5,6,7. Here we show that marine ectotherms experience hourly body temperatures that are closer to their upper thermal limits than do terrestrial ectotherms across all latitudes—but that this is the case only if terrestrial species can access thermal refugia. Although not a direct prediction of population decline, this thermal safety margin provides an index of the physiological stress caused by warming. On land, the smallest thermal safety margins were found for species at mid-latitudes where the hottest hourly body temperatures occurred; by contrast, the marine species with the smallest thermal safety margins were found near the equator. We also found that local extirpations related to warming have been twice as common in the ocean as on land, which is consistent with the smaller thermal safety margins at sea. Our results suggest that different processes will exacerbate thermal vulnerability across these two realms. Higher sensitivities to warming and faster rates of colonization in the marine realm suggest that extirpations will be more frequent and species turnover faster in the ocean. By contrast, terrestrial species appear to be more vulnerable to loss of access to thermal refugia, which would make habitat fragmentation and changes in land use critical drivers of species loss on land.

Responses of seaweeds that use CO2 as their sole inorganic carbon source to ocean acidification: differential effects of fluctuating pH but little benefit of CO2 enrichment

Britton D, Mundy CN, McGraw CM, Revill AT, Hurd CL. Responses of seaweeds that use CO2 as their sole inorganic carbon source to ocean acidification: differential effects of fluctuating pH but little benefit of CO2 enrichment Norkko J. ICES Journal of Marine Science [Internet]. 2019 . Available from: https://academic.oup.com/icesjms/advance-article-abstract/doi/10.1093/icesjms/fsz070/5479978
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $45.00
Type: Journal Article

Laboratory studies that test the responses of coastal organisms to ocean acidification (OA) typically use constant pH regimes which do not reflect coastal systems, such as seaweed beds, where pH fluctuates on diel cycles. Seaweeds that use CO2 as their sole inorganic carbon source (non-carbon dioxide concentrating mechanism species) are predicted to benefit from OA as concentrations of dissolved CO2 increase, yet this prediction has rarely been tested, and no studies have tested the effect of pH fluctuations on non-CCM seaweeds. We conducted a laboratory experiment in which two ecologically dominant non-CCM red seaweeds (Callophyllis lambertii and Plocamium dilatatum) were exposed to four pH treatments: two static, pHT 8.0 and 7.7 and two fluctuating, pHT 8.0 ± 0.3 and 7.7 ± 0.3. Fluctuating pH reduced growth and net photosynthesis in C. lambertii, while P. dilatatum was unaffected. OA did not benefit P. dilatatum, while C. lambertii displayed elevated net photosynthetic rates. We provide evidence that carbon uptake strategy alone cannot be used as a predictor of seaweed responses to OA and highlight the importance of species-specific sensitivity to [H+]. We also emphasize the importance of including realistic pH fluctuations in experimental studies on coastal organisms.

Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems

Zunino S, Canu DMelaku, Zupo V, Solidoro C. Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Global Ecology and Conservation [Internet]. 2019 :e00625. Available from: https://www.sciencedirect.com/science/article/pii/S2351989418305328
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

Increasing emissions of CO2 and the resultant ocean acidification (OA) will have large implications for the marine ecosystems sustained by habitat-forming species and their related ecosystem services (ES), with potentially significant impacts on human well-being. Here, we provide an assessment of the direct and indirect impacts of OA on ES. The changes in the functioning of coralligenous reefs and Posidonia oceanica meadows promoted by OA were investigated by i) synthesizing current knowledge into conceptual models. The models were then used to, ii) assessing the impacts of exposure of the selected taxa at the acidification level associated with two CO2 emission scenarios and iii) using the conceptual model outputs to project the cascading impacts from individuals to functions to ES.

The results highlight that the combination of the direct and indirect effects of acidification will alter many functions of both coralligenous and P.oceanica systems, triggering habitat modifications and the loss of highly valuable ES.

While the exact timing of the expected changes will depend on the severity of the emission scenarios, significant and hardly reversible changes can be expected as quickly as a few decades under the business-as-usual scenario, and many ecosystem services are at risk even under much more conservative scenarios.

Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea

Genevier LGC, Jamil T, Raitsos DE, Krokos G, Hoteit I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Global Change Biology [Internet]. 2019 . Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.14652
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $42.00
Type: Journal Article

As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly‐monitored waters, and thus, the extent of the damage is unknown. We propose the use of Marine Heatwaves (MHWs) as a new approach for detecting coral reef zones susceptible to bleaching, using the Red Sea as a model system. Red Sea corals are exceptionally heat‐resistant, yet bleaching events have increased in frequency. By applying a strict definition of MHWs on >30‐year satellite‐derived sea surface temperature observations (1985–2015), we provide an atlas of MHW hotspots over the Red Sea coral reef zones, which includes all MHWs that caused major coral bleaching. We found that: 1) if tuned to a specific set of conditions, MHWs identify all areas where coral bleaching has previously been reported; 2) those conditions extended farther and occurred more often than bleaching was reported; and 3) an emergent pattern of extreme warming events is evident in the northern Red Sea (since 1998), a region until now thought to be a thermal refuge for corals. We argue that bleaching in the Red Sea may be vastly underrepresented. Additionally, although northern Red Sea corals exhibit remarkably high thermal resistance, the rapidly rising incidence of MHWs of high intensity indicates this region may not remain a thermal refuge much longer. As our regionally‐tuned MHW algorithm was capable of isolating all extreme warming events that have led to documented coral bleaching in the Red Sea, we propose that this approach could be used to reveal bleaching‐prone regions in other data‐limited tropical regions. It may thus prove a highly valuable tool for policy‐makers to optimise the sustainable management of coastal economic zones.

Who cares about ocean acidification in the Plasticene?

Tiller R, Arenas F, Galdies C, Leitão F, Malej A, Romera BMartinez, Solidoro C, Stojanov R, Turk V, Guerra R. Who cares about ocean acidification in the Plasticene?. Ocean & Coastal Management [Internet]. 2019 ;174:170 - 180. Available from: https://www.sciencedirect.com/science/article/pii/S0964569118308792
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Plastics is all the rage, and mitigating marine litter is topping the agenda for nations pushing issues such as ocean acidification, or even climate change, away from the public consciousness. We are personally directly affected by plastics and charismatic megafauna is dying from it, and it is something that appears to be doable. So, who cares about the issue of ocean acidification anymore? We all should. The challenge is dual in the fact that is both invisible to the naked eye and therefore not felt like a pressing issue to the public, thereby not reaching the top of the agenda of policy makers; but also that it is framed in the climate change narrative of fear - whereby it instills in a fight-or-flight response in the public, resulting in their avoidance of the issue because they feel they are unable to take action that have results. In this article, we argue that the effective global environmental governance of ocean acidification, though critical to address, mitigate against and adapt to, is hindered by the both this lack of perception of urgency in the general public, fueled by a lack of media coverage, as well as a fight-or-flight response resulting from fear. We compare this to the more media friendly and plastics problem that is tangible and manageable. We report on a media plots of plastics and ocean acidification coverage over time and argue that the issue needs to be detangled from climate change and framed as its own issue to reach the agenda at a global level, making it manageable to assess and even care about for policy makers and the public alike?

Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO2 vent system

Migliaccio O, Pinsino A, Maffioli E, Smith AM, Agnisola C, Matranga V, Nonnis S, Tedeschi G, Byrne M, Gambi MCristina, et al. Living in future ocean acidification, physiological adaptive responses of the immune system of sea urchins resident at a CO2 vent system. Science of The Total Environment [Internet]. In Press ;672:938 - 950. Available from: https://www.sciencedirect.com/science/article/pii/S0048969719315189
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $41.95
Type: Journal Article

The effects of ocean acidification, a major anthropogenic impact on marine life, have been mainly investigated in laboratory/mesocosm experiments. We used the CO2 vents at Ischia as a natural laboratory to study the long-term effects of ocean acidification on the sea urchin Paracentrotus lividus population resident in low-pH (7.8 ± 0.2) compared to that at two control sites (pH 8.02 ± 0.00; 8.02 ± 0.01). The novelty of the present study is the analysis of the sea urchin immune cells, the sentinels of environmental stress responses, by a wide-ranging approach, including cell morphology, biochemistry and proteomics. Immune cell proteomics showed that 311 proteins were differentially expressed in urchins across sites with a general shift towards antioxidant processes in the vent urchins. The vent urchin immune cells showed higher levels of total antioxidant capacity, up-regulation of phagosome and microsomal proteins, enzymes of ammonium metabolism, amino-acid degradation, and modulation of carbon metabolism proteins. Lipid-hydroperoxides and nitric oxide levels were not different in urchins from the different sites. No differences in the coelomic fluid pH, immune cell composition, animal respiration, nitrogen excretion and skeletal mineralogy were observed. Our results reveal the phenotypic plasticity of the immune system of sea urchins adapted to life at vent site, under conditions commensurate with near-future ocean acidification projections.

Pages

Subscribe to RSS - Climate Change, Ocean Acidification, and Ocean Warming