Coastal and Offshore Energy

Potential environmental effects of deepwater floating offshore wind energy facilities

Farr H, Ruttenberg B, Walter RK, Wang Y-H, White C. Potential environmental effects of deepwater floating offshore wind energy facilities. Ocean & Coastal Management [Internet]. 2021 ;207:105611. Available from: https://www.sciencedirect.com/science/article/pii/S096456912100096X?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Over the last few decades, the offshore wind energy industry has expanded its scope from turbines mounted on foundations driven into the seafloor and standing in less than 60 m of water, to floating turbines moored in 120 m of water, to prospecting the development of floating turbines moored in ~1,000 m of water. Since there are few prototype turbines and mooring systems of these deepwater, floating offshore wind energy facilities (OWFs) currently deployed, their effects on the marine environment are speculative. Using the available scientific literature concerning appropriate analogs, including fixed-bottom OWFs, land-based wind energy facilities, wave and tidal energy devices, and oil and gas platforms, we conducted a qualitative systematic review to estimate the potential environmental effects of deepwater, floating OWFs during operation, as well as potential mitigation measures to address some of the effects. We evaluated six categories of potential effects: changes to atmospheric and oceanic dynamics due to energy removal and modifications, electromagnetic field effects on marine species from power cables, habitat alterations to benthic and pelagic fish and invertebrate communities, underwater noise effects on marine species, structural impediments to wildlife, and changes to water quality. Our synthesis of 89 articles selected for the review suggests that many of these potential effects could be mitigated to pose a low risk to the marine environment if developers adopt appropriate mitigation strategies and best-practice protocols. This review takes the necessary first steps in summarizing the available information on the potential environmental effects of deepwater, floating OWFs and can serve as a reference document for marine scientists and engineers, the energy industry, permitting agencies and regulators of the energy industry, project developers, and concerned stakeholders such as coastal residents, conservationists, and fisheries.

Wind energy's bycatch: Offshore wind deployment impacts on hydropower operation and migratory fish

Pfeiffer O, Nock D, Baker E. Wind energy's bycatch: Offshore wind deployment impacts on hydropower operation and migratory fish. Renewable and Sustainable Energy Reviews [Internet]. 2021 ;143:110885. Available from: https://www.sciencedirect.com/science/article/pii/S1364032121001799?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Hydropower plays a key role in maintaining grid reliability, but there is uncertainty regarding the ecological implications of using hydropower to balance variability from high penetration of intermittent renewable resources, such as solar and wind. Hydropower can offer advantages at the macro-ecological level (e.g., reduced greenhouse gas emissions), however it may have significant environmental impact on a local level (e.g., increased risk to fish species during migration and breeding periods). Using the New England region as a case study, we use an electricity model to estimate how hydropower operation changes as offshore wind capacity increases at a system level. We then tie alterations in hydropower energy production to local impacts on riverine ecosystems and the lifecycle of migratory fish. We find that increasing offshore wind capacity from 1600 to 10,000 MW more than doubles the average hourly hydropower ramping need and the associated river flowrate during April. This increased flowrate aligns with the migration timing of the lone endangered fish species on the Connecticut River, the shortnose sturgeon. Alternatively, the majority of months in which hydropower operation is most strongly impacted by the addition of offshore wind capacity do not coincide with key fish lifecycle events. Other sustainability benefits, including reduced air pollution and water consumption, can be achieved through deployments of offshore wind. Our results suggest that in order to balance global (i.e., CO2 mitigation) and local (i.e., fish migration) environmental issues, a portfolio of solutions is needed to address grid integration of renewables.

Combining offshore wind farms, nature conservation and seafood: Lessons from a Dutch community of practice

Steins NA, Veraart JA, Klostermann JEM, Poelman M. Combining offshore wind farms, nature conservation and seafood: Lessons from a Dutch community of practice. Marine Policy [Internet]. 2021 ;126:104371. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X20310228?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Large-scale development of offshore wind farms implies an increase in marine resource use conflicts. Managing potential impacts on marine ecosystems and on resource access for traditional and prospective users is key. Multi-use scenarios are a solution but are often approached as a 'design question' that can be settled through Marine Spatial Planning. In practice, regulatory, technical and socio-economic factors often hinder multi-use. Overcoming such barriers requires active collaboration between all stakeholders, yet meaningful participation in MSP processes often is a challenge. This paper explores the role of Communities of Practice as a participatory tool for developing multi-use. The Netherlands set up a ‘Community of Practice North Sea’ to stimulate the development of multi-use pilots by bringing interested parties together, sharing experiences and learning from each other in a context of existing and developing spatial and social claims. This development is part of the government's strategy aimed at finding a balance between offshore wind energy development, nature conservation and seafood production. The paper shows that by (partly) decoupling policy from practice and creating a positive learning environment, Communities of Practice have potential as a participatory tool for encouraging cooperation between stakeholders in an informal setting and facilitating a transition towards multi-use of marine resources. The paper proposes ten guidelines for using Communities of Practices as an action-oriented tool for salient multi-use practices.

Fishing within offshore wind farms in the North Sea: Stakeholder perspectives for multi-use from Scotland and Germany

Schupp MFelix, Kafas A, Buck BH, Krause G, Onyango V, Stelzenmüller V, Davies I, Scott BE. Fishing within offshore wind farms in the North Sea: Stakeholder perspectives for multi-use from Scotland and Germany. Journal of Environmental Management [Internet]. 2021 ;279:111762. Available from: https://www.sciencedirect.com/science/article/pii/S030147972031687X?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Offshore wind power generation requires large areas of sea to accommodate its activities, with increasing claims for exclusive access. As a result, pressure is placed on other established maritime uses, such as commercial fisheries. The latter sector has often been taking a back seat in the thrust to move energy production offshore, thus leading to disagreements and conflicts among the different stakeholder groups. In recognition of the latter, there has been a growing international interest in exploring the combination of multiple maritime activities in the same area (multi-use; MU), including the re-instatement of fishing activities within, or in close proximity to, offshore wind farms (OWFs). We summarise local stakeholder perspectives from two sub-national case studies (East coast of Scotland and Germany's North Sea EEZ) to scope the feasibility of combining multiple uses of the sea, such as offshore wind farms and commercial fisheries. We combined a desk-based review with 15 semi-structured qualitative interviews with key knowledge holders from both industries, regulators, and academia to aggregate key results. Drivers, barriers and resulting effects (positive and negative) for potential multi-use of fisheries and OWFs are listed and ranked (57 factors in total). Factors are of economic, social, policy, legal, and technical nature. To date, in both case study areas, the offshore wind industry has shown little interest in multi-use solutions, unless clear added value is demonstrated and no risks to their operations are involved. In contrast, the commercial fishing sector is proactive towards multi-use projects and acts as a driving force for MU developments. We provide a range of management recommendations, based on stakeholder input, to support progress towards robust decision making in relation to multi-use solutions, including required policy and regulatory framework improvements, good practice guidance, empirical studies, capacity building of stakeholders and improvements of the consultation process. Our findings represent a comprehensive depiction of the current state and key stakeholder aspirations for multi-use solutions combining fisheries and OWFs. We believe that the pathways towards robust decision making in relation to multi-use solutions suggested here are transferable to other international locations.

Evaluating cumulative effects of small scale hydropower development using GIS modelling and representativeness assessments

Erikstad L, Hagen D, Stange E, Bakkestuen V. Evaluating cumulative effects of small scale hydropower development using GIS modelling and representativeness assessments. Environmental Impact Assessment Review [Internet]. 2020 ;85:106458. Available from: https://www.sciencedirect.com/science/article/pii/S0195925520301980?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Assessing cumulative effects are a vital task for strategic environmental assessments (SEA) but lack of consistent methodology has hampered the development and implementation of useful tools. We present a model for GIS and multivariate analysis to assess the effects on a valued ecosystem type at a regional scale based on the sum of impacts of local projects. We demonstrate application of the model by assessing how hydropower developments would generate cumulative impacts on river gorges for a county in northern Norway. We use principal component analyses (PCA) of spatially-explicit variables from the region to describe the diversity of river gorge ecology with a mathematical low-dimensional bioclimatic space. We then calculate cumulative effects of hydropower development as the proportions of subspaces of the multidimensional bioclimatic PCA that are affected by either existing infrastructure or planned and possible hydropower developments. The results showed that adding development of all potential sites for small-scale hydropower would have substantial impacts on over half of all bioclimatic segments where gorges were registered and more than 70% of all segments with forested river gorges. By demonstrating these possible cumulative effects we can illustrate the need for caution in hydropower planning to avoid reducing river gorge representativeness and diversity. The method can be applied for other types of development projects and other valued ecosystems, provided the assessed ecosystems and development installations can be mapped or modelled over a sufficiently large area.

Oceanic Routing of Wind-Sourced Energy Along the Arctic Continental Shelves

Danielson SL, Hennon TD, Hedstrom KS, Pnyushkov AV, Polyakov IV, Carmack E, Filchuk K, Janout M, Makhotin M, Williams WJ, et al. Oceanic Routing of Wind-Sourced Energy Along the Arctic Continental Shelves. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00509/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Data from coastal tide gauges, oceanographic moorings, and a numerical model show that Arctic storm surges force continental shelf waves (CSWs) that dynamically link the circumpolar Arctic continental shelf system. These trains of barotropic disturbances result from coastal convergences driven by cross-shelf Ekman transport. Observed propagation speeds of 600−3000 km day–1, periods of 2−6 days, wavelengths of 2000−7000 km, and elevation maxima near the coast but velocity maxima near the upper slope are all consistent with theoretical CSW characteristics. Other, more isolated events are tied to local responses to propagating storm systems. Energy and phase propagation is from west to east: ocean elevation anomalies in the Laptev Sea follow Kara Sea anomalies by one day and precede Chukchi and Beaufort Sea anomalies by 4−6 days. Some leakage and dissipation occurs. About half of the eastward-propagating energy in the Kara Sea passes Severnaya Zemlya into the Laptev Sea. About half of the eastward-propagating energy from the East Siberian Sea passes southward through Bering Strait, while one quarter is dissipated locally in the Chukchi Sea and another quarter passes eastward into the Beaufort Sea. Likewise, CSW generation in the Bering Sea can trigger elevation and current speed anomalies downstream in the Northeast Chukchi Sea of 25 cm and 20 cm s–1, respectively. Although each event is ephemeral, the large number of CSWs generated annually suggest that they represent a non-negligible source of time-averaged energy transport and bottom stress-induced dissipative mixing, particularly near the outer shelf and upper slope. Coastal water level and landfast ice breakout event forecasts should include CSW effects and associated lag times from distant upstream winds.

Food safety during seaweed cultivation at offshore wind farms: An exploratory study in the North Sea

Banach JL, van den Burg SWK, van der Fels-Klerx HJ. Food safety during seaweed cultivation at offshore wind farms: An exploratory study in the North Sea. Marine Policy [Internet]. 2020 ;120:104082. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X20301500
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Multi-use in ocean space, and seas, entails the co-location of different industries or technologies and their corresponding activities that take place at the same time in a specific location. This concept focuses on finding solutions to tackle global challenges in food security. However, the effects that seaweed cultivation at offshore wind farms may have on food and feed safety are less readily addressed. This study examined whether currently available food and feed safety standards for seaweed can be applied to multi-use activities at sea. The focus was on the combined use of seaweed cultivation at an offshore wind farm in the North Sea. Literature regarding hazards in seaweed was screened, and standards were evaluated. Expert elicitation on seaweed cultivation was retrieved via in-depth interviews and a workshop. Results showed that although some food safety hazards may be more apparent for seaweed cultivation such as toxic metals (e.g., arsenic, cadmium) and iodine, others may become relevant when considering multi-use (e.g., allergens, polycyclic aromatic hydrocarbons, toxic metabolites). Key factors for food safety include the location of seaweed cultivation, handling and processing of seaweed, and seaweed testing. Public standards, the Food Safety System Certification 22000 standard, and the Marine Stewardship Council/Aquaculture Stewardship Council standard are recommended for the food and marine sectors to consider when determining standards to implement. This case study provides an example of how to address seaweed food and feed safety in a multi-use scenario in the North Sea. We recommend additional case studies for other multi-use at sea scenarios.

Resource Niches of Co-occurring Invertebrate Species at an Offshore Wind Turbine Indicate a Substantial Degree of Trophic Plasticity

Mavraki N, De Mesel I, Degraer S, Moens T, Vanaverbeke J. Resource Niches of Co-occurring Invertebrate Species at an Offshore Wind Turbine Indicate a Substantial Degree of Trophic Plasticity. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00379/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Offshore wind farms (OWFs) in the North Sea are proliferating, causing alterations in local ecosystems by adding artificial hard substrates into naturally soft-bottom areas. These substrates are densely colonized by fouling organisms, which may compete for the available resources. While the distribution of some species is restricted to specific parts of the turbine, others occur across depth zones and may therefore face different competitive environments. Here we investigate the trophic niches of seven invertebrate species: three sessile (Diadumene cinctaMetridium senile, and Mytilus edulis), one hemi-sessile (Jassa herdmani) and three mobile species (Ophiothrix fragilisNecora puber, and Pisidia longicornis) that occur in multiple depth zones. We hypothesized that these species would be trophic generalists, exhibiting trophic plasticity by selecting different resources in different depth zones, to cope with the different competitive environments in which they occur. We analyzed δ13C and δ15N of these species and their potential resources across depth zones. Our results show that most of these invertebrates are indeed trophic generalists which display substantial trophic plasticity, selecting different resources in different zones. Degree of trophic plasticity was not related to mobility of the species. There are two possible explanations for these dietary changes with depth: either consumers switch diet to avoid competition with other (dominant) species, or they benefit from the consumption of a non-limiting resource. Only Diadumene cincta was a trophic specialist that consumed suspended particulate organic matter (SPOM) independent of its zone of occurrence. Altogether, trophic plasticity appears an important mechanism for the co-existence of invertebrate species along the depth gradient of an offshore wind turbine.

How to model social-ecological systems? – A case study on the effects of a future offshore wind farm on the local society and ecosystem, and whether social compensation matters

Haraldsson M, Raoux A, Riera F, Hay J, Dambacher JM, Niquil N. How to model social-ecological systems? – A case study on the effects of a future offshore wind farm on the local society and ecosystem, and whether social compensation matters. Marine Policy [Internet]. 2020 ;119:104031. Available from: 10.1016/j.marpol.2020.104031
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Models of social-ecological systems (SES) are acknowledged as an important tool to understand human-nature relations. However, many SES models fail to integrate adequate information from both the human and ecological subsystems. With an example model of a future Offshore Wind Farm development and its effects on both the ecosystem and local human population, we illustrate a method facilitating a “balanced” SES model, in terms of including information from both subsystems. We use qualitative mathematical modeling, which allows to quickly analyze the structure and dynamics of a system without including quantitative data, and therefore to compare alternative system structures based on different understandings of how the system works. By including similar number of system variables in the two subsystems, we balanced the complexity between them. Our analyses show that this complexity is important in order to predict indirect and sometimes counterintuitive effects. We also highlight some conceptually important questions concerning social compensations during developmental projects in general, and wind farms in particular. Our results suggest that the more project holders get involved in various manner in the local socio-ecological system, the more society will benefit as a whole. Increased involvement through e.g. new projects or job-opportunities around the windfarm has the capacity to offset the negative effects of the windfarm on the local community. These benefits are enhanced when there is an overall acceptance and appropriation of the project. We suggest this method as a tool to support the decision-making process and to facilitate discussions between stakeholders, especially among local communities.

Governing Risks of Multi-Use: Seaweed Aquaculture at Offshore Wind Farms

van den Burg SWK, Röckmann C, Banach JL, van Hoof L. Governing Risks of Multi-Use: Seaweed Aquaculture at Offshore Wind Farms. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00060/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Spatial claims concerning the rapidly growing European offshore wind sector give rise to various ideas for the multi-use application of wind farms. Seaweed is considered a promising feedstock for food and feed that could be produced at offshore wind farms. Concerns about risks resulting in liability claims and insurance premiums are often seen as show-stoppers to multi-use at offshore wind farms. In this study, key environmental risks of seaweed cultivation at offshore wind farms, identified through literature review, are characterized based on stakeholder consultation. The current approach to risk governance is evaluated to assess how it can handle the uncertain, complex, and/or ambiguous risks of multi-use. It is concluded that current risk governance for multi-use is poorly equipped to deal with the systemic nature of risks. Risk governance should be a joint effort of governments and private regulators. It can improve if it is based on an adaptive framework for risk assessment that can deal with complex, systemic risks. Furthermore, it should be flexible and inclusive, i.e., open to new incoming information and stakeholder input, and taking into account and communicate about the different stakes and values of the various parties involved. The importance of communication and inclusion must be recognized, which promotes participation of concerned stakeholders.

Pages

Subscribe to RSS - Coastal and Offshore Energy