Corals

Reef state and performance as indicators of cumulative impacts on coral reefs

Castro-Sanguino C, Ortiz JCarlos, Thompson A, Wolff NH, Ferrari R, Robson B, Magno-Canto MM, Puotinen M, Fabricius KE, Uthicke S. Reef state and performance as indicators of cumulative impacts on coral reefs. Ecological Indicators [Internet]. 2021 ;123:107335. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X20312772?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coral bleaching, cyclones, outbreaks of crown-of-thorns seastar, and reduced water quality (WQ) threaten the health and resilience of coral reefs. The cumulative impacts from multiple acute and chronic stressors on “reef State” (i.e., total coral cover) and “reef Performance” (i.e., the deviation from expected rate of total coral cover increase) have rarely been assessed simultaneously, despite their management relevance. We evaluated the dynamics of coral cover (total and per morphological groups) in the Central and Southern Great Barrier Reef over 25 years, and identified and compared the main environmental drivers of State and Performance at the reef level (i.e. based on total coral cover) and per coral group. Using a combination of 25 environmental metrics that consider both the frequency and magnitude of impacts and their lagged effects, we find that the stressors that correlate with State differed from those correlating with Performance. Importantly, we demonstrate that WQ metrics better predict Performance than State. Further, inter-annual dynamics in WQ (here available for a subset of the data) improved the explanatory power of WQ metrics on Performance over long-term WQ averages. The lagged effects of cumulative acute stressors, and to a lesser extent poor water quality, correlated negatively with the Performance of some but not all coral groups. Tabular Acropora and branching non-Acropora were the most affected by water quality demonstrating that group-specific approaches aid in the interpretation of monitoring data and can be crucial for the detection of the impact of chronic pressures. We highlight the complexity of coral reef dynamics and the need of evaluating Performance metrics in order to prioritise local management interventions.

Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef

Howlett L, Camp EF, Edmondson J, Henderson N, Suggett DJ. Coral growth, survivorship and return-on-effort within nurseries at high-value sites on the Great Barrier Reef Ferse SCA. PLOS ONE [Internet]. 2021 ;16(1):e0244961. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244961
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coral reefs are deteriorating worldwide prompting reef managers and stakeholders to increasingly explore new management tools. Following back-to-back bleaching in 2016/2017, multi-taxa coral nurseries were established in 2018 for the first time on the Great Barrier Reef (GBR) to aid reef maintenance and restoration at a “high-value” location–Opal Reef–frequented by the tourism industry. Various coral species (n = 11) were propagated within shallow water (ca. 4-7m) platforms installed across two sites characterised by differing environmental exposure–one adjacent to a deep-water channel (Blue Lagoon) and one that was relatively sheltered (RayBan). Growth rates of coral fragments placed onto nurseries were highly variable across taxa but generally higher at Blue Lagoon (2.1–10.8 cm2 month-1 over 12 months) compared to RayBan (0.6–6.6 cm2 month-1 over 9 months). Growth at Blue Lagoon was largely independent of season, except for Acropora tenuis and Acropora hyacinthus, where growth rates were 15–20% higher for December 2018-July 2019 (“warm season”) compared to August-December 2018 (“cool season”). Survivorship across all 2,536 nursery fragments was ca. 80–100%, with some species exhibiting higher survivorship at Blue Lagoon (Acropora loripesPorites cylindrica) and others at RayBan (AhyacinthusMontipora hispida). Parallel measurements of growth and survivorship were used to determine relative return-on-effort (RRE) scores as an integrated metric of “success” accounting for life history trade-offs, complementing the mutually exclusive assessment of growth or survivorship. RRE scores within sites (across species) were largely driven by growth, whereas RRE scores between sites were largely driven by survivorship. The initial nursery phase of coral propagation therefore appears useful to supplement coral material naturally available for stewardship of frequently visited Great Barrier Reef tourism (high-value) sites, but further assessment is needed to evaluate how well the growth rates and survival for nursery grown corals translate once material is outplanted.

Coupled Epidemio-Hydrodynamic Modeling to Understand the Spread of a Deadly Coral Disease in Florida

Dobbelaere T, Muller EM, Gramer LJ, Holstein DM, Hanert E. Coupled Epidemio-Hydrodynamic Modeling to Understand the Spread of a Deadly Coral Disease in Florida. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.591881/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1509416_45_Marine_20201217_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

For the last six years, the Florida Reef Tract (FRT) has been experiencing an outbreak of the Stony Coral Tissue Loss Disease (SCTLD). First reported off the coast of Miami-Dade County in 2014, the SCTLD has since spread throughout the entire FRT with the exception of the Dry Tortugas. However, the causative agent for this outbreak is currently unknown. Here we show how a high-resolution bio-physical model coupled with a modified patch Susceptible-Infectious-Removed epidemic model can characterize the potential causative agent(s) of the disease and its vector. In the present study, the agent is assumed to be transported within composite material (e.g., coral mucus, dying tissues, and/or resuspended sediments) driven by currents and potentially persisting in the water column for extended periods of time. In this framework, our simulations suggest that the SCTLD is likely to be propagated within neutrally buoyant material driven by mean barotropic currents. Calibration of our model parameters with field data shows that corals are diseased within a mean transmission time of 6.45 days, with a basic reproduction number slightly above 1. Furthermore, the propagation speed of the disease through the FRT is shown to occur for a well-defined range of values of a disease threshold, defined as the fraction of diseased corals that causes an exponential growth of the disease in the reef site. Our results present a new connectivity-based approach to understand the spread of the SCTLD through the FRT. Such a method can provide a valuable complement to field observations and lab experiments to support the management of the epidemic as well as the identification of its causative agent.

Coral Disease Time Series Highlight Size-Dependent Risk and Other Drivers of White Syndrome in a Multi-Species Model

Greene A, Donahue MJ, Caldwell JM, Heron SF, Geiger E, Raymundo LJ. Coral Disease Time Series Highlight Size-Dependent Risk and Other Drivers of White Syndrome in a Multi-Species Model. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.601469/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1509416_45_Marine_20201217_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coral diseases contribute to the decline of reef communities, but factors that lead to disease are difficult to detect. In the present study, we develop a multi-species model of colony-scale risk for the class of coral diseases referred to as White Syndromes, investigating the role of current or past conditions, including both environmental stressors and biological drivers at the colony and community scales. Investigating 7 years of coral survey data at five sites in Guam we identify multiple environmental and ecological associations with White Syndrome, including a negative relationship between short-term heat stress and White Syndrome occurrence, and strong evidence of increasing size-dependent White Syndrome risk across coral species. Our findings result in a generalized model used to predict colony-scale White Syndrome risk for multiple species, highlighting the value of long-term monitoring efforts to detect drivers of coral disease.

Modeling Coral Bleaching Mitigation Potential of Water Vertical Translocation – An Analogue to Geoengineered Artificial Upwelling

Feng EY, Sawall Y, Wall M, Lebrato M, Fu Y. Modeling Coral Bleaching Mitigation Potential of Water Vertical Translocation – An Analogue to Geoengineered Artificial Upwelling. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.556192/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Artificial upwelling (AU) is a novel geoengineering technology that brings seawater from the deep ocean to the surface. Within the context of global warming, AU techniques are proposed to reduce sea surface temperature at times of thermal stress around coral reefs. A computationally fast but coarse 3D Earth System model (3.6° longitude × 1.8° latitude) was used to investigate the environmental impacts of hypothetically implemented AU strategies in the Great Barrier Reef, South China Sea, and Hawaiian regions. While omitting the discussion on sub-grid hydrology, we simulated in our model a water translocation from either 130 or 550 m depth to sea surface at rates of 1 or 50 m3 s–1 as analogs to AU implementation. Under the Representative Concentration Pathway 8.5 emissions scenario from year 2020 on, the model predicted a prevention of coral bleaching until the year 2099 when AU was implemented, except under the least intense AU scenario (water from 130 m depth at 1 m3 s–1). Yet, intense AU implementation (water from 550 m depth at 50 m3 s–1) will likely have adverse effects on coral reefs by overcooling the surface water, altering salinity, decreasing calcium carbonate saturation, and considerably increasing nutrient levels. Our result suggests that if we utilize AU for mitigating coral bleaching during heat stress, AU implementation needs to be carefully designed with respect to AU’s location, depth, intensity and duration so that undesirable environmental effects are minimized. Following a proper installation and management procedure, however, AU has the potential to decelerate destructive bleaching events and buy corals more time to adjust to climate change.

Climatic and Oceanographic Controls on Coral Bleaching Conditions in the Maldivian Region

De Falco C, Bracco A, Pasquero C. Climatic and Oceanographic Controls on Coral Bleaching Conditions in the Maldivian Region. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.539869/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The frequency of coral bleaching events has been increasing in recent decades due to the temperature rise registered in most regions near the ocean. Their occurrence in the Maldivian Archipelago has been observed in the months following the peak of strong El Niño events. Bleaching has not been uniform, and some reefs have been only marginally impacted. Here, we use satellite observations and a regional ocean model to explore the spatial and temporal variability of sea surface temperatures (SSTs), and quantify the relative magnitude of ENSO-related episodes with respect to the recent warming. In line with other studies, it is confirmed that the long-term trend in SST significantly increases the frequency of stress conditions for the Maldivian corals. It is also found that the interaction between currents and the steep bathymetry is responsible for a local cooling of about 0.2°C in the Archipelago during the warmest season, with respect to the surrounding waters. This cooling largely reduces the frequency of mortality conditions.

High Coral Bycatch in Bottom-Set Gillnet Coastal Fisheries Reveals Rich Coral Habitats in Southern Portugal

Dias V, Oliveira F, Boavida J, Serrão EA, Gonçalves JMS, Coelho MAG. High Coral Bycatch in Bottom-Set Gillnet Coastal Fisheries Reveals Rich Coral Habitats in Southern Portugal. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.603438/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Bottom-contact fisheries are unquestionably one of the main threats to the ecological integrity and functioning of deep-sea and circalittoral ecosystems, notably cold-water corals (CWC) and coral gardens. Lessons from the destructive impact of bottom trawling highlight the urgent need to understand how fisheries affect these vulnerable marine ecosystems. At the same time, the impact of other fishing gear and small-scale fisheries remains sparsely known despite anecdotal evidence suggesting their impact may be significant. This study aims to provide baseline information on coral bycatch by bottom-set gillnets used by artisanal fisheries in Sagres (Algarve, southwestern Portugal), thereby contributing to understand the impact of the activity but also the diversity and abundance of corals in this region. Coral bycatch frequency and species composition were quantified over two fishing seasons (summer-autumn and spring) for 42 days. The relationship with fishing effort was characterized according to métiers (n = 6). The results showed that 85% of the gillnet deployments caught corals. The maximum number of coral specimens per net was observed in a deployment targeting Lophius budegassa (n = 144). In total, 4,326 coral fragments and colonies of 22 different species were captured (fishing depth range of 57–510 m, mean 139 ± 8 m). The most affected species were Eunicella verrucosa (32%), Paramuricea grayi (29%), Dendrophyllia cornigera (12%), and Dendrophyllia ramea (6%). The variables found to significantly influence the amount of corals caught were the target species, net length, depth, and mesh size. The 22 species of corals caught as bycatch belong to Orders Alcyonacea (80%), Scleractinia (18%), Zoantharia (1%), and Antipatharia (1%), corresponding to around 13% of the coral species known for the Portuguese mainland coast. These results show that the impact of artisanal fisheries on circalittoral coral gardens and CWC is potentially greater than previously appreciated, which underscores the need for new conservation measures and alternative fishing practices. Measures such as closure of fishing areas, frequent monitoring onboard of fishing vessels, or the development of encounter protocols in national waters are a good course of action. This study highlights the rich coral gardens of Sagres and how artisanal fisheries can pose significant threat to corals habitats in certain areas.

Enhancing coral recruitment through assisted mass settlement of cultured coral larvae

Cruz DW dela, Harrison PL. Enhancing coral recruitment through assisted mass settlement of cultured coral larvae Chen CAllen. PLOS ONE [Internet]. 2020 ;15(11):e0242847. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242847
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The escalating rate at which coral communities are declining globally requires urgent intervention and new approaches to reef management to reduce and halt further coral loss. For reef systems with limited natural larval supply, the introduction of large numbers of competent coral larvae directly to natural reef substrata provides a potentially useful approach to replenish adult coral populations. While few experiments have tested this approach, only one experiment has demonstrated its long-term success to date. Given the differences in life-history traits among corals, and different sensitivities of larvae to abiotic and biotic factors, coupled with the dynamic nature of post-settlement survivorship and recruitment processes, trials of the larval enhancement technique with larvae of different coral species are needed to test the broader applicability and viability of this approach. Accordingly, in this paper we examine the applicability of the larval enhancement technique to restore a population of Acropora loripes in the Bolinao-Anda Reef Complex, Pangasinan, northwestern Philippines. Larvae were cultured ex situ following spawning of collected Aloripes colonies in June 2014. Competent larvae were transported to degraded reef areas and approximately 300,000 larvae were introduced in each of three 6 × 4 m plots directly on the reef. Fine mesh enclosures retained the larvae inside each treatment plot for five days. Three adjacent 6 × 4 m plots that served as controls were also covered with mesh enclosures, but no larvae were introduced. Each plot contained ten 10 × 10 cm conditioned settlement tiles cut from dead tabulate Acropora that were used to quantify initial larval settlement. After allowing larval settlement for five days, mean settlement on tiles from the larval enhancement plots that were monitored under stereomicroscopes was significantly higher (27.8 ± 6.7 spat per tile) than in control plots, in which not a single recruit was recorded. Post-settlement survivorship and growth of spat and coral recruits on tiles and reef substrata inside the experimental plots were monitored periodically for 35 months. After 35 months, the mean size of each of the remaining 47 Aloripes coral colonies surviving on the reef substrata was 438.1 ± 5.4 cm3, with a mean diameter of 7.9 ± 0.6 cm. The average production cost for each of the surviving Aloripes colonies at 35 months was USD 35.20. These colonies are expected to spawn and contribute to the natural larval pool when they become reproductively mature, thereby enhancing natural coral recovery in the area. This study demonstrates that mass coral larval enhancement can be successfully used for restoring populations of coral species with different life-history traits, and the techniques can rapidly increase larval recruitment rates on degraded reef areas, hence catalysing the regeneration of declining coral populations.

Coral calcification responses to the North Atlantic Oscillation and coral bleaching in Bermuda

Courtney TA, Kindeberg T, Andersson AJ. Coral calcification responses to the North Atlantic Oscillation and coral bleaching in Bermuda Caroselli E. PLOS ONE [Internet]. 2020 ;15(11):e0241854. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0241854
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The North Atlantic Oscillation (NAO) has been hypothesized to drive interannual variability in Bermudan coral extension rates and reef-scale calcification through the provisioning of nutritional pulses associated with negative NAO winters. However, the direct influence of the NAO on Bermudan coral calcification rates remains to be determined and may vary between species and reef sites owing to implicit differences in coral life history strategies and environmental gradients across the Bermuda reef platform. In this study, we investigated the connection between negative NAO winters and Bermudan Diploria labyrinthiformisPseudodiploria strigosa, and Orbicella franksi coral calcification rates across rim reef, lagoon, and nearshore reef sites. Linear mixed effects modeling detected an inverse correlation between Dlabyrinthiformis calcification rates and the winter NAO index, with higher rates associated with increasingly negative NAO winters. Conversely, there were no detectable correlations between Pstrigosa or Ofranksi calcification rates and the winter NAO index suggesting that coral calcification responses associated with negative NAO winters could be species-specific. The correlation between coral calcification rates and winter NAO index was significantly more negative at the outer rim of the reef (Hog Reef) compared to a nearshore reef site (Whalebone Bay), possibly indicating differential influence of the NAO as a function of the distance from the reef edge. Furthermore, a negative calcification anomaly was observed in 100% of Dlabyrinthiformis cores in association with the 1988 coral bleaching event with a subsequent positive calcification anomaly in 1989 indicating a post-bleaching recovery in calcification rates. These results highlight the importance of assessing variable interannual coral calcification responses between species and across inshore-offshore gradients to interannual atmospheric modes such as the NAO, thermal stress events, and potential interactions between ocean warming and availability of coral nutrition to improve projections for future coral calcification rates under climate change.

Subregional variation in cover and diversity of hard coral (Scleractinia) in the Western Province, Solomon Islands following an unprecedented global bleaching event

Denley D, Metaxas A, Scheibling R. Subregional variation in cover and diversity of hard coral (Scleractinia) in the Western Province, Solomon Islands following an unprecedented global bleaching event Pinheiro HTercio. PLOS ONE [Internet]. 2020 ;15(11):e0242153. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242153
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coral reefs are critically important marine ecosystems that are threatened worldwide by cumulative impacts of global climate change and local stressors. The Solomon Islands comprise the southwestern boundary of the Coral Triangle, the global center of coral diversity located in the Indo-Pacific, and represent a bright spot of comparatively healthy coral reef ecosystems. However, reports on the status of coral reefs in the Solomon Islands are based on monitoring conducted at 5 stations in 2003–2004 and 2006–2007, with no information on how corals in this region have responded to more recent global bleaching events and other local stressors. In this study, we compare reef condition (substrate composition) and function (taxonomic and morphological diversity of hard corals) among 15 reefs surveyed in the Western Province, Solomon Islands that span a range of local disturbance and conservation histories. Overall, we found high cover of live hard coral (15–64%) and diverse coral assemblages despite an unprecedented 36-month global bleaching event in the three years leading up to our surveys in 2018. However, there was significant variation in coral cover and diversity across the 15 reefs surveyed, suggesting that impacts of global disturbance events are moderated at smaller scales by local anthropogenic factors (fisheries extraction, land-use impacts, marine management) and environmental (hydrodynamics) conditions. Our study provides evidence that relatively healthy reefs persist at some locations in the Solomon Islands and that local stewardship practices have the potential to impact reef condition at subregional scales. As coral reef conservation becomes increasingly urgent in the face of escalating cumulative threats, prioritising sites for management efforts is critical. Based on our findings and the high dependency of Solomon Islanders on coral reef ecosystem services, we advocate that the Western Province, Solomon Islands be considered of high conservation priority.

Pages

Subscribe to RSS - Corals