Corals

Disparities in Spawning Times Between in situ and ex situ Pillar Corals

Neely KL, Lewis CL, Macaulay KA. Disparities in Spawning Times Between in situ and ex situ Pillar Corals. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00643/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Contrasts in spawning time between in situ and ex situ colonies of the pillar coral Dendrogyra cylindrus were assessed by comparing 8 years of in situ spawning observations with 3 years of observations on ex situ corals held in outdoor flow-through tanks. In situ colonies exhibited a 3-day spawning window, with peak spawning occurring three nights after the full moon and 90 (males) – 96 (females) min after sunset. The ex situ spawning window extended across 7 days, with a peak on nights 4–5 after the full moon; females continued to spawn through night 8. Ex situ spawning occurred ∼50 min later than in situ spawning, and the spawning window for ex situ females was significantly greater than for in situ colonies. Fragments held ex situ for as few as 10 days experienced delayed spawning times, but corals held for greater than one lunar year exhibited significantly later spawning than those held less than one lunar year. Early and late full moons resulted in earlier male spawn time and asynchronous gamete release between males and females. Comparing spawn times throughout the Caribbean identified distance from lighted shorelines as a strong correlate with spawn time in minutes after sunset; proximity to artificial light resulted in delayed spawn times. We propose that artificial lights are red-shifting the twilight spectrum and affecting corals’ perception of lighting cues that trigger spawning. Coral colonies held at outdoor ex situ facilities, which are subject to even higher levels of artificial light, exhibit even further asynchrony in spawning time as well as spawning night. The effects of widespread and increasing light pollution on spawning synchrony may represent a potential stressor that could inhibit natural reef recovery.

Beyond Reef Restoration: Next-Generation Techniques for Coral Gardening, Landscaping, and Outreach

Schmidt-Roach S, Duarte CM, Hauser CAE, Aranda M. Beyond Reef Restoration: Next-Generation Techniques for Coral Gardening, Landscaping, and Outreach. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00672/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Anthropogenic disturbances have led to the degradation of coral reef systems globally, calling for proactive and progressive local strategies to manage individual ecosystems. Although restoration strategies such as assisted evolution have recently been proposed to enhance the performance of coral reef populations in response to current and future stressors, scalability of these concepts and implementation in habitat or ecosystem-wide management remains a major limitation for logistical and financial reasons. We propose to implement these restoration efforts into an ecotourism approach that embeds land-based coral gardening efforts as architectural landscape elements to enhance and beautify coastal development sites, providing additional value and rationale for ecotourism stakeholders to invest. Our approach extends and complements existing concepts integrating coral reef restoration in ecotourism projects by creating a participatory platform that can be experienced by the public, while effectively integrating numerous restoration techniques, and providing opportunities for long-term restoration and monitoring studies. In this context, we discuss options for pre-selection of corals and systematic, large-scale monitoring of coral genotype performance targeting higher resilience to future stressors. To reduce operating costs during out-planting, we suggest to create coral seeding hubs, clusters of closely transplanted conspecifics, to quickly and efficiently restore/enhance active reproduction. We discuss our land-based coral gardening approach in the context of positive impacts beyond reef restoration. By restoring and strengthening resilience of local populations, we believe this strategy will contribute to a net positive conservation impact, create a culture on restoration and enhance and secure blue economical investments that rely on healthy marine systems.

Effects of future climate on coral-coral competition

Johnston NK, Campbell JE, Paul VJ, Hay ME. Effects of future climate on coral-coral competition Melzner F. PLOS ONE [Internet]. 2020 ;15(8):e0235465. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235465
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

As carbon dioxide (CO2) levels increase, coral reefs and other marine systems will be affected by the joint stressors of ocean acidification (OA) and warming. The effects of these two stressors on coral physiology are relatively well studied, but their impact on biotic interactions between corals are poorly understood. While coral-coral interactions are less common on modern reefs, it is important to document the nature of these interactions to better inform restoration strategies in the face of climate change. Using a mesocosm study, we evaluated whether the combined effects of ocean acidification and warming alter the competitive interactions between the common coral Porites astreoides and two other mounding corals (Montastraea cavernosa or Orbicella faveolata) common in the Caribbean. After 7 days of direct contact, Pastreoides suppressed the photosynthetic potential of Mcavernosa by 100% in areas of contact under both present (~28.5°C and ~400 μatm pCO2) and predicted future (~30.0°C and ~1000 μatm pCO2) conditions. In contrast, under present conditions Mcavernosa reduced the photosynthetic potential of Pastreoides by only 38% in areas of contact, while under future conditions reduction was 100%. A similar pattern occurred between Pastreoides and Ofaveolata at day 7 post contact, but by day 14, each coral had reduced the photosynthetic potential of the other by 100% at the point of contact, and Ofaveolata was generating larger lesions on Pastreoides than the reverse. In the absence of competition, OA and warming did not affect the photosynthetic potential of any coral. These results suggest that OA and warming can alter the severity of initial coral-coral interactions, with potential cascading effects due to corals serving as foundation species on coral reefs.

Spatial Self-Organization as a New Perspective on Cold-Water Coral Mound Development

van der Kaaden A-S, van Oevelen D, Rietkerk M, Soetaert K, van de Koppel J. Spatial Self-Organization as a New Perspective on Cold-Water Coral Mound Development. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00631/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Cold-water corals build extensive reefs on the seafloor that are oases of biodiversity, biomass, and organic matter processing rates. The reefs baffle sediments, and when coral growth and sedimentation outweigh ambient sedimentation, carbonate mounds of tens to hundreds of meters high and several kilometers wide can form. Because coral mounds form over ten-thousands of years, their development process remains elusive. While several environmental factors influence mound development, the mounds also have a major impact on their environment. This feedback between environment and mounds, and how this drives mound development is the focus of this paper. Based on the similarity of spatial coral mound patterns and patterns in self-organized ecosystems, we provide a new perspective on coral mound development. In accordance with the theory of self-organization through scale-dependent feedbacks, we first elicit the processes that are known to affect mound development, and might cause scale-dependent feedbacks. Then we demonstrate this concept with model output from a study on the Logachev area, SW Rockall Trough margin. Spatial patterns in mound provinces are the result of a complex set of interacting processes. Spatial self-organization provides a framework in which to place and compare these processes, so as to assess if and how they contribute to pattern formation in coral mounds.

Deep coral habitats of Glacier Bay National Park and Preserve, Alaska

Hartill ÉC, Waller RG, Auster PJ. Deep coral habitats of Glacier Bay National Park and Preserve, Alaska Davies A. PLOS ONE [Internet]. 2020 ;15(8):e0236945. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236945
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Glacier Bay National Park and Preserve (GBNPP) in Southeast Alaska is a system of glaciated fjords with a unique and recent history of deglaciation. As such, it can serve as a natural laboratory for studying patterns of distribution in marine communities with proximity to glacial influence. In order to examine the changes in fjord-based coral communities, underwater photo-quadrats were collected during multipurpose dives with a remotely operated vehicle (ROV) in March of 2016. Ten sites were chosen to represent the geochronological and oceanographic gradients present in GBNPP. Each site was surveyed vertically between 100 and 420 meters depth and photo-quadrats were extracted from the video strip transects for analysis. The ROV was equipped with onboard CTD which recorded environmental data (temperature and salinity), in order to confirm the uniformity of these characteristics at depth across the fjords. The percent cover and diversity of species were lowest near the glaciated heads of the fjords and highest in the Central Channel and at the mouths of the fjords. Diversity is highest where characteristics such as low sedimentation and increased tidal currents are predominant. The diverse communities at the mouths of the fjords and in the Central Channel were dominated by large colonies of the Red Tree Coral, Primnoa pacifica, as well as sponges, brachiopods, multiple species of cnidarians, echinoderms, molluscs and arthropods. The communities at the heads of the fjords were heavily dominated by pioneering species such as brachiopoda, hydrozoan turf, the encrusting stoloniferan coral Sarcodyction incrustans, and smaller colonies of Ppacifica. This research documents a gradient of species dominance from the Central Channel to the heads of the glaciated fjords, which is hypothesized to be driven by a combination of physical and biological factors such as glacial sedimentation, nutrient availability, larval dispersal, and competition.

Identification of a Soft Coral Garden Candidate Vulnerable Marine Ecosystem (VME) Using Video Imagery, Davis Strait, West Greenland

Long S, Sparrow-Scinocca B, Blicher ME, Arboe NHammeken, Fuhrmann M, Kemp KM, Nygaard R, Zinglersen K, Yesson C. Identification of a Soft Coral Garden Candidate Vulnerable Marine Ecosystem (VME) Using Video Imagery, Davis Strait, West Greenland. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00460/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The term vulnerable marine ecosystem (VME) was introduced to facilitate the spatial management of deep-seas, identifying those habitats vulnerable to anthropogenic disturbance, such as trawling. Consistent interpretation of the VME definition has been hampered by an underlying paucity of knowledge about the nature and distribution of deep-sea habitats. Photographic and video platforms yield data rich, quantifiable imagery to address these knowledge gaps. A low-cost towed benthic video sled has been used to investigate deep-sea habitats and trawling impacts in west Greenland. A review of imagery from multiple cruises highlighted an area where benthic megafauna contributes to notable structural complexity on the continental slope of the Toqqusaq Bank. Quantitative analysis of imagery from this area provides the first description of a soft coral garden habitat and other communities. The coral garden and observed densities are considered in relation to the VME guidelines (FAO, 2009) and wider literature. The study proposes a 486 km2 area spanning ∼60 km of continental slope as a VME. This has direct implications for the management of economically important deep-sea trawl fisheries, which are immediately adjacent. This furthers our knowledge and understanding of VMEs in North Atlantic, in a previously understudied region and demonstrates the utility of a low-cost video sled for identifying and describing VMEs.

Influence of Deep-Water Corals and Sponge Gardens on Infaunal Community Composition and Ecosystem Functioning in the Eastern Canadian Arctic

Pierrejean M, Grant C, Neves Bde Moura, Chaillou G, Edinger E, F. Blanchet G, Maps F, Nozais C, Archambault P. Influence of Deep-Water Corals and Sponge Gardens on Infaunal Community Composition and Ecosystem Functioning in the Eastern Canadian Arctic. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00495/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The relationships between infaunal diversity and ecosystem function of biogenic structures in the Eastern Canadian Arctic remain poorly documented. Our study investigated the influence of sponge gardens at the Frobisher Bay site (137 m) and bamboo corals at the Baffin Bay site (1007 m) on the infaunal community structure and benthic ecosystem functioning. The occurrence of both types of biogenic structure type enhanced particular taxa and/or feeding guilds. A large density of suspension filter feeders was observed in bamboo coral sediment, whereas bare sediment exhibited a large proportion of nematodes and deposit-detritus feeders. Sponge gardens’ sediment showed a high proportion of isopods, Paraonidae polychaetes and up/down conveyors whereas bare sediment exhibited a large density of filter feeders. Through incubation cores, we measured ex situ benthic nutrient and oxygen fluxes at the sediment-water interface in each habitat and site. Biogeochemical fluxes varied significantly between habitats in the Baffin Bay site with a significant impact of bamboo coral habitat on nutrient fluxes (nitrate, ammonium, and silicate). Surprisingly, the sediment hosting bamboo corals acted as a source of nitrate and ammonium reaching values similar or higher to the Frobisher site despite the difference in water depth, and thus food supply between the two sites. These significant releases could derive from (i) a high organic matter deposition in bamboo coral habitat, allowed by their erected structure, (ii) a high efficiency of bioturbators (surficial modifiers and burrowers) mixing the surface layer of the sediment, and (iii) the difference in sediment type. Our study highlighted that, compared to its adjacent habitat, the presence of bamboo corals appeared to enhance the infaunal density and nutrient release of its sediment. In contrast, the impact of sponge gardens was not as clear as for bamboo coral habitat, likely due to the relatively significant presence of megabiota in the sponge garden adjacent habitat. Thus, our results based on a relatively small sample size, indicate that the bamboo coral habitat seems to increase the efficiency of deep-benthic ecosystem functioning, while that of sponge garden on the shallow ecosystem functioning remains uncertain.

The Biophysical Controls of Macroalgal Growth on Subtropical Reefs

Cordeiro CAugusto Ma, Harborne AR, Ferreira CEduardo Le. The Biophysical Controls of Macroalgal Growth on Subtropical Reefs. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00488/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The importance of macro-grazers in controlling macroalgal cover has long been recognized on tropical and temperate reefs, with fishes of primary importance on the former and sea urchins on the latter. However, the functional role of herbivorous urchins and fishes on subtropical marginal reefs remains poorly explored. To evaluate the relative importance of fishes and urchins on marginal subtropical reefs, this study used exclusion devices (excluding all grazers, fishes, or urchins) at two depths (1–2, 5–6 m) on Brazilian rocky reefs. Depth influenced responses within cages, with shallow sites changing from patchy barrens (dominated by crustose coralline algae) to epilithic algae-dominated within exclusion treatments, and sea urchins being the primary driver of benthic dynamics. In deeper water, the growth and senescence cycle of Sargassum species drove benthic dynamics and was associated with the season of higher intensity of upwelling events. No clear influence of herbivorous fishes was detected on benthic cover at either depth, despite biomasses similar to comparable tropical reefs where they do control macroalgal populations. Thus, abiotic factors seem to be a strong driver of benthic dynamics in the studied region, and top-down processes act only at shallow depths. Consequently, despite Brazilian subtropical communities being dominated by tropical species, the ecological drivers of these reefs may be more similar to temperate systems.

Multi-Year Viability of a Reef Coral Population Living on Mangrove Roots Suggests an Important Role for Mangroves in the Broader Habitat Mosaic of Corals

Lord KScavo, Lesneski KC, Bengtsson ZA, Kuhn KM, Madin J, Cheung B, Ewa R, Taylor JF, Burmester EM, Morey J, et al. Multi-Year Viability of a Reef Coral Population Living on Mangrove Roots Suggests an Important Role for Mangroves in the Broader Habitat Mosaic of Corals. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00377/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Half of coral species that occur on Caribbean reefs have also been reported living in mangroves. Given the vulnerability of corals living on reefs to environmental change, populations of the same species living in mangroves may prove critical to long-term survival of these coral species and the resilience of nearby reefs. To date, few studies have addressed the health and viability of mangrove coral populations, which is necessary if we are to understand their role in the broader meta-community. Here we present the first longitudinal study of the distribution, survival, growth, and recruitment of a mangrove coral population over multiple years. From 2014 to 2018, we fully censused a population of Porites divaricata along 640 meters of a mangrove-lined channel at Calabash Caye, Belize, and beginning in 2015, we tagged individual colonies for longitudinal monitoring. Year-to-year survivorship averaged 66.6% (±3.9 SE), and of the surviving colonies, on average, 72.7% (±2.5 SE) experienced net growth. The number of colonies, their spatial distribution, and population size-structure were essentially unchanged, except for an unusually high loss of larger colonies from 2016 to 2017, possibly the result of a local disturbance. However, each annual census revealed substantial turnover. For example, from 2016 to 2017, the loss or death of 72 colonies was offset by the addition of 89 recruits. Integral projection models (IPM) for two consecutive one-year intervals implicated recruitment and the persistence of large colonies as having the largest impacts on population growth. This 5-year study suggests that the P. divaricata population in the mangroves is viable, but may be routinely impacted by disturbances that cause the mortality of larger colonies. As many corals occur across a mosaic of habitat types, understanding the population dynamics and life-history variability of corals across habitats, and quantifying genetic exchange between habitats, will be critical to forecasting the fate of individual coral species and to maximizing the efficacy of coral restoration efforts.

The Influence of Eddies on Coral Larval Retention in the Flower Garden Banks

Limer BD, Bloomberg J, Holstein DM. The Influence of Eddies on Coral Larval Retention in the Flower Garden Banks. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00372/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

While coral larval exchange among reef patches is crucial to the persistence of coral metapopulations, larval retention within patches is critical for local population maintenance. In isolated systems such as the Flower Garden Banks (FGB) of the northwest Gulf of Mexico (NW GoM), local retention is thought to play an important role in maintaining high levels of coral cover. Numerous mesoscale cyclonic and anticyclonic features (eddies) are known to spin off from the GoM’s Loop Current, many of which pass over the FGB. We developed a biophysical model of coral larval dispersal (2004–2018) to investigate the extent to which eddies may facilitate coral larval exchange between and within the east and west FGB. Virtual larvae of the broadcast spawning Orbicella faveolata and the brooding Porites astreoides were released and tracked with species-specific reproductive and larval behaviors to investigate differences in retention and connectivity in corals with contrasting life histories. Eddies were detected and tracked using sea surface altimetry and compared with larval trajectories to assess the retentive characteristics of these features. Results suggest consistently high, but species-specific, levels of local retention and cross-bank connectivity in both coral species. High local retention is possible early in the dispersal of P. astreoides, and both species routinely experience retention due to recirculation in eddy features as late as 30 days after planulation or spawning. Eddies passing over the FGB were associated with pulses of between- and within-bank retention, indicating that larvae are capable of dispersing from and returning to coral reefs in the NW GoM. Although opportunities for retention are inherently ephemeral and stochastic due to the nature of Loop Current Eddy (LCE) shedding, eddy propagation should serve as a reliable reseeding mechanism for FGB coral populations. In particular, peaks in late summer eddy propagation correspond with mass coral spawning and may enhance larval retention. These findings support the assertions that healthy FGB reefs may be largely self-sustaining, and that persistent, self-sustaining populations at the FGB may supply downstream reefs with larvae and behave as a remote climate change refugium.

Pages

Subscribe to RSS - Corals