Deep-sea ecosystems and hydrothermal vents

A Blueprint for an Inclusive, Global Deep-Sea Ocean Decade Field Program

Howell KL, Hilário A, A. Allcock L, Bailey DM, Baker M, Clark MR, Colaço A, Copley J, Cordes EE, Danovaro R, et al. A Blueprint for an Inclusive, Global Deep-Sea Ocean Decade Field Program. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.584861/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (> 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.

Deep-Sea Coral and Sponge Taxa Increase Demersal Fish Diversity and the Probability of Fish Presence

Henderson MJ, Huff DD, Yoklavich MM. Deep-Sea Coral and Sponge Taxa Increase Demersal Fish Diversity and the Probability of Fish Presence. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.593844/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Fishes are known to use deep-sea coral and sponge (DSCS) species as habitat, but it is uncertain whether this relationship is facultative (circumstantial and not restricted to a particular function) or obligate (necessary to sustain fish populations). To explore whether DSCS provide essential habitats for demersal fishes, we analyzed 10 years of submersible survey video transect data, documenting the locations and abundance of DSCS and demersal fishes in the Southern California Bight (SCB). We first classified the different habitats in which fishes and DSCS taxa occurred using cluster analysis, which revealed four distinct DSCS assemblages based on depth and substratum. We then used logistic regression and gradient forest analysis to identify the ecological correlates most associated with the presence of rockfish taxa (Sebastes spp.) and biodiversity. After accounting for spatial autocorrelation, the factors most related to the presence of rockfishes were depth, coral height, and the abundance of a few key DSCS taxa. Of particular interest, we found that young-of-the-year rockfishes were more likely to be present in locations with taller coral and increased densities of Plumarella longispinaLophelia pertusa, and two sponge taxa. This suggests these DSCS taxa may serve as important rearing habitat for rockfishes. Similarly, the gradient forest analysis found the most important ecological correlates for fish biodiversity were depth, coral cover, coral height, and a subset of DSCS taxa. Of the 10 top-ranked DSCS taxa in the gradient forest (out of 39 potential DSCS taxa), 6 also were associated with increased probability of fish presence in the logistic regression. The weight of evidence from these multiple analytical methods suggests that this subset of DSCS taxa are important fish habitats. In this paper we describe methods to characterize demersal communities and highlight which DSCS taxa provide habitat to demersal fishes, which is valuable information to fisheries agencies tasked to manage these fishes and their essential habitats.

Microplastic Pollution in Deep-Sea Sediments From the Great Australian Bight

Barrett J, Chase Z, Zhang J, Holl MMBanasza, Willis K, Williams A, Hardesty BD, Wilcox C. Microplastic Pollution in Deep-Sea Sediments From the Great Australian Bight. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.576170/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1452864_45_Marine_20201008_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Interest in understanding the extent of plastic and specifically microplastic pollution has increased on a global scale. However, we still know relatively little about how much plastic pollution has found its way into the deeper areas of the world’s oceans. The extent of microplastic pollution in deep-sea sediments remains poorly quantified, but this knowledge is imperative for predicting the distribution and potential impacts of global plastic pollution. To address this knowledge gap, we quantified microplastics in deep-sea sediments from the Great Australian Bight using an adapted density separation and dye fluorescence technique. We analyzed sediment cores from six locations (1–6 cores each, n = 16 total samples) ranging in depth from 1,655 to 3,062 m and offshore distances ranging from 288 to 356 km from the Australian coastline. Microplastic counts ranged from 0 to 13.6 fragments per g dry sediment (mean 1.26 ± 0.68; n = 51). We found substantially higher microplastic counts than recorded in other analyses of deep-sea sediments. Overall, the number of microplastic fragments in the sediment increased as surface plastic counts increased, and as the seafloor slope angle increased. However, microplastic counts were highly variable, with heterogeneity between sediment cores from the same location greater than the variation across sampling sites. Based on our empirical data, we conservatively estimate 14 million tonnes of microplastic reside on the ocean floor.

Crumbling Reefs and Cold-Water Coral Habitat Loss in a Future Ocean: Evidence of “Coralporosis” as an Indicator of Habitat Integrity

Hennige SJ, Wolfram U, Wickes L, Murray F, J. Roberts M, Kamenos NA, Schofield S, Groetsch A, Spiesz EM, Aubin-Tam M-E, et al. Crumbling Reefs and Cold-Water Coral Habitat Loss in a Future Ocean: Evidence of “Coralporosis” as an Indicator of Habitat Integrity. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00668/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1437459_45_Marine_20200922_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ocean acidification is a threat to the net growth of tropical and deep-sea coral reefs, due to gradual changes in the balance between reef growth and loss processes. Here we go beyond identification of coral dissolution induced by ocean acidification and identify a mechanism that will lead to a loss of habitat in cold-water coral reef habitats on an ecosystem-scale. To quantify this, we present in situ and year-long laboratory evidence detailing the type of habitat shift that can be expected (in situ evidence), the mechanisms underlying this (in situ and laboratory evidence), and the timescale within which the process begins (laboratory evidence). Through application of engineering principals, we detail how increased porosity in structurally critical sections of coral framework will lead to crumbling of load-bearing material, and a potential collapse and loss of complexity of the larger habitat. Importantly, in situ evidence highlights that cold-water corals can survive beneath the aragonite saturation horizon, but in a fundamentally different way to what is currently considered a biogenic cold-water coral reef, with a loss of the majority of reef habitat. The shift from a habitat with high 3-dimensional complexity provided by both live and dead coral framework, to a habitat restricted primarily to live coral colonies with lower 3-dimensional complexity represents the main threat to cold-water coral reefs of the future and the biodiversity they support. Ocean acidification can cause ecosystem-scale habitat loss for the majority of cold-water coral reefs.

Assessing the environmental status of selected North Atlantic deep-sea ecosystems

Kazanidis G, Orejas C, Borja A, Kenchington E, Henry L-A, Callery O, Carreiro-Silva M, Egilsdottir H, Giacomello E, Grehan A, et al. Assessing the environmental status of selected North Atlantic deep-sea ecosystems. Ecological Indicators [Internet]. 2020 ;119:106624. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X20305616?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The deep sea is the largest biome on Earth but the least explored. Our knowledge of it comes from scattered sources spanning different spatial and temporal scales. Implementation of marine policies like the European Union’s Marine Strategy Framework Directive (MSFD) and support for Blue Growth in the deep sea are therefore hindered by lack of data. Integrated assessments of environmental status require tools to work with different and disaggregated datasets (e.g. density of deep-sea habitat-forming species, body-size distribution of commercial fishes, intensity of bottom trawling) across spatial and temporal scales. A feasibility study was conducted as part of the four-year ATLAS project to assess the effectiveness of the open-access Nested Environmental status Assessment Tool (NEAT) to assess deep-sea environmental status. We worked at nine selected study areas in the North Atlantic focusing on five MSFD descriptors (D1-Biodiversity, D3-Commercial fish and shellfish, D4-Food webs, D6-Seafloor integrity, D10-Marine litter). The objectives of the present study were to i) explore and propose indicators that could be used in the assessment of deep-sea environmental status, ii) evaluate the performance of NEAT in the deep sea, and iii) identify challenges and opportunities for the assessment of deep-sea status. Based on data availability, data quality and expert judgement, in total 24 indicators (one for D1, one for D3, seven for D4, 13 for D6, two for D10) were used in the assessment of the nine study areas, their habitats and ecosystem components. NEAT analyses revealed differences among the study areas for their environmental status ranging from “poor” to “high”. Overall, the NEAT results were in moderate to complete agreement with expert judgement, previous assessments, scientific literature on human-pressure gradients and expected management outcomes. We suggest that the assessment of deep-sea environmental status should take place at habitat and ecosystem level (rather than at species level) and at relatively large spatial scales, in comparison to shallow-water areas. Limited knowledge across space (e.g. distribution of habitat-forming species) and the scarcity of long-term data sets limit our knowledge about natural variability and human impacts in the deep sea preventing a more systematic assessment of habitat and ecosystem components in the deep sea. However, stronger cross-sectoral collaborations, the use of novel technologies and open data-sharing platforms will be critical for establishing environmental baseline indicator values in the deep sea that will contribute to the science base supporting the implementation of marine policies and stimulating Blue Growth.

Assessing the environmental status of selected North Atlantic deep-sea ecosystems

Kazanidis G, Orejas C, Borja A, Kenchington E, Henry L-A, Callery O, Carreiro-Silva M, Egilsdottir H, Giacomello E, Grehan A, et al. Assessing the environmental status of selected North Atlantic deep-sea ecosystems. Ecological Indicators [Internet]. 2020 ;119:106624. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X20305616?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The deep sea is the largest biome on Earth but the least explored. Our knowledge of it comes from scattered sources spanning different spatial and temporal scales. Implementation of marine policies like the European Union’s Marine Strategy Framework Directive (MSFD) and support for Blue Growth in the deep sea are therefore hindered by lack of data. Integrated assessments of environmental status require tools to work with different and disaggregated datasets (e.g. density of deep-sea habitat-forming species, body-size distribution of commercial fishes, intensity of bottom trawling) across spatial and temporal scales. A feasibility study was conducted as part of the four-year ATLAS project to assess the effectiveness of the open-access Nested Environmental status Assessment Tool (NEAT) to assess deep-sea environmental status. We worked at nine selected study areas in the North Atlantic focusing on five MSFD descriptors (D1-Biodiversity, D3-Commercial fish and shellfish, D4-Food webs, D6-Seafloor integrity, D10-Marine litter). The objectives of the present study were to i) explore and propose indicators that could be used in the assessment of deep-sea environmental status, ii) evaluate the performance of NEAT in the deep sea, and iii) identify challenges and opportunities for the assessment of deep-sea status. Based on data availability, data quality and expert judgement, in total 24 indicators (one for D1, one for D3, seven for D4, 13 for D6, two for D10) were used in the assessment of the nine study areas, their habitats and ecosystem components. NEAT analyses revealed differences among the study areas for their environmental status ranging from “poor” to “high”. Overall, the NEAT results were in moderate to complete agreement with expert judgement, previous assessments, scientific literature on human-pressure gradients and expected management outcomes. We suggest that the assessment of deep-sea environmental status should take place at habitat and ecosystem level (rather than at species level) and at relatively large spatial scales, in comparison to shallow-water areas. Limited knowledge across space (e.g. distribution of habitat-forming species) and the scarcity of long-term data sets limit our knowledge about natural variability and human impacts in the deep sea preventing a more systematic assessment of habitat and ecosystem components in the deep sea. However, stronger cross-sectoral collaborations, the use of novel technologies and open data-sharing platforms will be critical for establishing environmental baseline indicator values in the deep sea that will contribute to the science base supporting the implementation of marine policies and stimulating Blue Growth.

Assessing the environmental status of selected North Atlantic deep-sea ecosystems

Kazanidis G, Orejas C, Borja A, Kenchington E, Henry L-A, Callery O, Carreiro-Silva M, Egilsdottir H, Giacomello E, Grehan A, et al. Assessing the environmental status of selected North Atlantic deep-sea ecosystems. Ecological Indicators [Internet]. 2020 ;119:106624. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X20305616?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The deep sea is the largest biome on Earth but the least explored. Our knowledge of it comes from scattered sources spanning different spatial and temporal scales. Implementation of marine policies like the European Union’s Marine Strategy Framework Directive (MSFD) and support for Blue Growth in the deep sea are therefore hindered by lack of data. Integrated assessments of environmental status require tools to work with different and disaggregated datasets (e.g. density of deep-sea habitat-forming species, body-size distribution of commercial fishes, intensity of bottom trawling) across spatial and temporal scales. A feasibility study was conducted as part of the four-year ATLAS project to assess the effectiveness of the open-access Nested Environmental status Assessment Tool (NEAT) to assess deep-sea environmental status. We worked at nine selected study areas in the North Atlantic focusing on five MSFD descriptors (D1-Biodiversity, D3-Commercial fish and shellfish, D4-Food webs, D6-Seafloor integrity, D10-Marine litter). The objectives of the present study were to i) explore and propose indicators that could be used in the assessment of deep-sea environmental status, ii) evaluate the performance of NEAT in the deep sea, and iii) identify challenges and opportunities for the assessment of deep-sea status. Based on data availability, data quality and expert judgement, in total 24 indicators (one for D1, one for D3, seven for D4, 13 for D6, two for D10) were used in the assessment of the nine study areas, their habitats and ecosystem components. NEAT analyses revealed differences among the study areas for their environmental status ranging from “poor” to “high”. Overall, the NEAT results were in moderate to complete agreement with expert judgement, previous assessments, scientific literature on human-pressure gradients and expected management outcomes. We suggest that the assessment of deep-sea environmental status should take place at habitat and ecosystem level (rather than at species level) and at relatively large spatial scales, in comparison to shallow-water areas. Limited knowledge across space (e.g. distribution of habitat-forming species) and the scarcity of long-term data sets limit our knowledge about natural variability and human impacts in the deep sea preventing a more systematic assessment of habitat and ecosystem components in the deep sea. However, stronger cross-sectoral collaborations, the use of novel technologies and open data-sharing platforms will be critical for establishing environmental baseline indicator values in the deep sea that will contribute to the science base supporting the implementation of marine policies and stimulating Blue Growth.

Species and Functional Diversity of Deep-Sea Nematodes in a High Energy Submarine Canyon

Liao J-X, Wei C-L, Yasuhara M. Species and Functional Diversity of Deep-Sea Nematodes in a High Energy Submarine Canyon. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00591/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Gaoping Submarine Canyon (GPSC) off southwestern Taiwan is a high energy canyon connected to a small mountain river with extremely high sediment load (∼10 kt km–2 y–1). Due to heavy seasonal precipitation (>3,000 mm y–1) and high tectonic activity in the region, the GPSC is known for active sediment transport processes and associated submarine geohazards (e.g., submarine cable breaks). More importantly, strong internal tides have been recorded in the GPSC to drive head-ward, bottom-intensified currents, which result in sediment erosion and resuspension in response to the tidal cycles. To understand the effects of extreme physical conditions on marine nematodes, we sampled the surface sediments along the thalweg of upper GPSC and adjacent slope (200–1,100 m) using a multicorer in the summer and fall of 2015. We found that the nematode species, functional, trophic diversity and maturity dropped significantly in the GPSC as compared with slope communities, but the nematode abundances were not affected by the adverse conditions in the canyon. The non-selective deposit-feeding, fast colonizing nematodes (e.g., SabatieriaDaptonemaAxonolaimus, and Metadesmolaimus) dominated the canyon seafloor. In contrast, other species of non-selective deposit feeders (Setosabatieria and Elzalia), epigrowth feeders (Craspodema), omnivores/predators (Paramesacanthion), and other species constituted the diverse nematode assemblages on the slope. We found that the strong bottom currents in the GPSC may depress the local nematode diversity by removing the organic-rich, fine-grained sediments; therefore, only the resilient or fast recovering nematode species could survive and prevail. The high species turnover with depth and between the canyon and slope habitats demonstrates that strong environmental filtering processes were the primary mechanism shaping the nematode community assembly off SW Taiwan. Between the canyon and slope, a considerable contribution of nestedness pattern also indicates some degree of local extinction and dispersal limitation in the dynamic GPSC.

Recent Changes in Deep Ventilation of the Mediterranean Sea; Evidence From Long-Term Transient Tracer Observations

Li P, Tanhua T. Recent Changes in Deep Ventilation of the Mediterranean Sea; Evidence From Long-Term Transient Tracer Observations. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00594/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Mediterranean Sea is a small region of the global ocean but with a very active overturning circulation that allows surface perturbations to be transported to the interior ocean. Understanding of ventilation is important for understanding and predicting climate change and its impact on ocean ecosystems. To quantify changes of deep ventilation, we investigated the spatiotemporal variability of transient tracers (i.e., CFC-12 and SF6) observations combined with temporal evolution of hydrographic and oxygen observations in the Mediterranean Sea from 13 cruises conducted during 1987–2018, with emphasize on the update from 2011 to 2018. Spatially, both the Eastern and Western Mediterranean Deep Water (EMDW and WMDW) show a general west-to-east gradient of increasing salinity and potential temperature but decreasing oxygen and transient tracer concentrations. Temporally, stagnant and weak ventilation is found in most areas of the EMDW during the last decade despite the prevailing ventilation in the Adriatic Deep Water between 2011 and 2016, which could be a result of the weakened Adriatic source intensity. The EMDW has been a mixture of the older Southern Aegean Sea dense waters formed during the Eastern Mediterranean Transient (EMT) event, and the more recent ventilated deep-water of the Adriatic origin. In the western Mediterranean basin, we found uplifting of old WMDW being replaced by the new deep-water from the Western Mediterranean Transition (WMT) event and uplifting of the new WMDW toward the Alboran Sea. The temporal variability revealed enhanced ventilation after the WMT event but slightly weakened ventilation after 2016, which could be a result of combined influences from the eastern (for the weakened Adriatic source intensity) and western (for the weakened influence from the WMT event) Mediterranean Sea. Additionally, the Mediterranean Sea is characterized by a Tracer Minimum Zone (TMZ) at mid-depth of the water column attributed to the rapid deep ventilation so that the TMZ is the slowest ventilated layer. This zone of weak ventilation stretches across the whole Mediterranean Sea from the Levantine basin into the western basin.

Global Deep-Sea Biodiversity Research Trends Highlighted by Science Mapping Approach

Costa C, Fanelli E, Marini S, Danovaro R, Aguzzi J. Global Deep-Sea Biodiversity Research Trends Highlighted by Science Mapping Approach. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00384/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The scientific literature available on deep-sea biodiversity is ample and covers a wide array of objectives, geographic areas, and topics. It also explores the links between ecosystem functioning and productivity as well as modeling, management, and exploitation. New statistical analytical tools now allow the comprehensive monitoring of the status of deep-sea research to highlight global research topics and their trends, which deserve further development and economic investments. Here, we used a science mapping approach to provide a global and systematic bibliometric synthesis of these current research topics and their trends to identify the size, growth, trajectory, and geographic distribution of scientific efforts as well as to highlight the emerging topics. A total of 1287 deep-sea biodiversity publications were retrieved from the Scopus database from 1993 to the present. Both established and emerging research topics were identified: (i) biogeochemical, microbial, and molecular analyses; (ii) biodiversity assessments; (iii) ecosystem conservation and management; and, finally, (iv) zoology and taxocoenosis. The temporal change in research activity (which was assessed by subdividing publications into blocks from 1993 to 2010 and 2011 to 2019) demonstrated that the “biogeochemical, microbial, and molecular analyses” cluster was not present from 1993 to 2010 since it was included in the cluster for “biodiversity assessments,” which it eventually diverged from in the following couple of decades. The United States took the dominant role in research, followed by the United Kingdom; Germany and France were also evidenced. China was particularly associated with the United States.

Pages

Subscribe to RSS - Deep-sea ecosystems and hydrothermal vents