Deep-sea ecosystems and hydrothermal vents

Hydrothermal Energy Transfer and Organic Carbon Production at the Deep Seafloor

Le Bris N, Yücel M, Das A, Sievert SM, LokaBharathi PP, Girguis PR. Hydrothermal Energy Transfer and Organic Carbon Production at the Deep Seafloor. Frontiers in Marine Science [Internet]. 2019 ;5. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2018.00531/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In just four decades, hundreds of hydrothermal vent fields have been discovered, widely distributed along tectonic plate boundaries on the ocean floor. Vent invertebrate biomass reaching up to tens of kilograms per square meter has attracted attention as a potential contributor to the organic carbon pool available in the resource-limited deep sea. But the rate of chemosynthetic production of organic carbon at deep-sea hydrothermal vents is highly variable and still poorly constrained. Despite the advent of molecular techniques and in situ sensing technologies, the factors that control the capacity of vent communities to exploit the available chemical energy resources remain largely unknown. Here, we review key drivers of hydrothermal ecosystem productivity, including (a) the diverse mechanisms governing energy transfer among biotic and abiotic processes; (b) the tight linkages among these processes; and (c) the nature and extent of spatial and temporal diversity within a variety of geological settings; and (d) the influence of these and other factors on the turnover of microbial primary producers, including those associated with megafauna. This review proposes a revised consideration of the pathways leading to the biological conversion of inorganic energy sources into biomass in different hydrothermal habitats on the seafloor. We propose a conceptual model that departs from the canonical conservative mixing-continuum paradigm by distinguishing low-temperature diffuse flows (LT-diffuse flows) derived from seawater and high-temperature fluids (HT-diffuse flow) derived from end-member fluids. We further discuss the potential for sustained organic matter production at vent-field scale, accounting for the natural instability of hydrothermal ecosystems, from the climax vent communities of exceptional productivity to the long-term lower-activity assemblages. The parameterization of such a model crucially needs assessment of in situ rates and of the largely unrecognized natural variability on relevant temporal scales. Beyond the diversity of hydrothermal settings, the depth range and water mass distribution over oceanic ridge crests, volcanic arcs and back-arc systems are expected to significantly influence biomass production rates. A particular challenge is to develop observing strategies that will account for the full range of environmental variables while attempting to derive global or regional estimates.

Deep-sea hydrothermal vent ecosystem principles: Identification of ecosystem processes, services and communication of value

Turner PJ, Thaler AD, Freitag A, Collins PColman. Deep-sea hydrothermal vent ecosystem principles: Identification of ecosystem processes, services and communication of value. Marine Policy [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S0308597X18302811
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Difficulties in quantifying the value of an ecosystem have prompted efforts to emphasize how human well-being depends on the physical, chemical and biological properties of an ecosystem (i.e., ecosystem structure) as well as ecosystem functioning. Incorporating ecosystem structure and function into discussions of value is important for deep-sea ecosystems because many deep-sea ecosystem services indirectly benefit humans and are more difficult to quantify. This study uses an ecosystem principles approach to illustrate a broader definition of value for deep-sea hydrothermal vents. Expert opinion, solicited using an iterative survey approach, was used to develop principles that describe hydrothermal vent processes and their links to human well-being. Survey participants established 28 principles relating to ecosystem structure (n = 12), function (n = 6), cultural services (n = 8) and provisioning services (n = 2), namely the provision of mineral deposits and genetic resources. Principles relating to cultural services emphasized the inspirational value of hydrothermal vents for the arts and ocean education, as well as their importance as a frontier in scientific research. The prevalence of principles relating to ecosystem structure and function (n = 18) highlights the need to understand subsequent links to ecosystem services. For example, principles relating to regulating services were not established by the expert group but links between ecosystem function and regulating services can be made. The ecosystem principles presented here emphasize a more holistic concept of value that will be important to consider as regulations are developed for the exploitation of minerals associated with deep-sea hydrothermal vents.

Valuing Nature Waste Removal in the Offshore Environment Following the Deepwater Horizon Oil Spill

Washburn TW, Yoskowitz DW, Montagna PA. Valuing Nature Waste Removal in the Offshore Environment Following the Deepwater Horizon Oil Spill. Frontiers in Marine Science [Internet]. 2018 ;5. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2018.00477/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The offshore and deep-sea marine environment provides many ecosystem services (i.e., benefits to humans), for example: climate regulation, exploitable resources, processes that enable life on Earth, and waste removal. Unfortunately, the remote nature of this environment makes it difficult to estimate the values of these services. One service in particular, waste removal, was examined in the context of the Deepwater Horizon oil spill. Nearly 5 million barrels of oil were released into the offshore Gulf of Mexico, and 14 billion dollars were spent removing about 25% of the oil spilled. Using values for oil spill cleanup efforts, which included capping the wellhead and collecting oil, surface combustion, and surface skimming, it was calculated that waste removal, i.e., natural removal of spilled oil, saved BP over $35 billion. This large amount demonstrates the costs of offshore disasters, the importance of the offshore environment to humans, as well as the large monetary values associated with ecosystem services provided.

Ensemble habitat suitability modeling of vulnerable marine ecosystem indicator taxa to inform deep-sea fisheries management in the South Pacific Ocean

Georgian SE, Anderson OF, Rowden AA. Ensemble habitat suitability modeling of vulnerable marine ecosystem indicator taxa to inform deep-sea fisheries management in the South Pacific Ocean. Fisheries Research [Internet]. 2019 ;211:256 - 274. Available from: https://www.sciencedirect.com/science/article/pii/S0165783618303321
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Resolutions of the United Nations General Assembly (UNGA) require states and competent authorities to protect vulnerable marine ecosystems (VMEs), ecologically important habitats in the deep sea that are considered to be especially at risk from anthropogenic disturbances such as fishing. The lack of data concerning the location and extent of VMEs poses a significant obstacle to their protection. Habitat suitability modeling is increasingly used in spatial management planning due to its ability to predict the distribution and niche of marine organisms based on limited input data. We generated broad-scale, medium-resolution (1 km2) ensemble models for ten VME indicator taxa within the New Zealand Exclusive Economic Zone and a portion of the South Pacific Regional Fishery Management Organisation (SPRFMO) convention area. Ensemble models were constructed using a weighted average of three habitat suitability model types: Boosted Regression Trees, Maximum Entropy, and Random Forest. All models performed well, with area under the curve scores above 0.9, and ensemble models marginally outperformed any of the individual modeling approaches. Highly suitable habitat for each VME indicator taxa was predicted to occur in relatively small areas throughout the region, typically associated with elevated seafloor features with steep slopes. Determining the spatial distribution of VME indicator taxa is critical for assessing the current and historical extent of bottom trawling impacts on benthic communities, and for supporting the improved spatial management of fisheries in the South Pacific Ocean. Given the additional threats of climate change and ocean acidification to VME indicator taxa throughout the deep sea, habitat suitability modeling is likely to play an increasing role in designing effective, long-term protection measures for cumulative impacts on VMEs.

The imprint of microfibres in southern European deep seas

Sanchez-Vidal A, Thompson RC, Canals M, de Haan WP. The imprint of microfibres in southern European deep seas Chin W-C. PLOS ONE [Internet]. 2018 ;13(11):e0207033. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207033
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

Pollution of the marine environment by large and microscopic plastic fragments and their potential impacts on organisms has stimulated considerable research interest and has received widespread publicity. However, relatively little attention has been paid to the fate and effects of microplastic particles that are fibrous in shape, also referred as microfibres, which are mostly shed from synthetic textiles during production or washing. Here we assess composition and abundance of microfibres in seafloor sediments in southern European seas, filling gaps in the limited understanding of the long-range transport and magnitude of this type of microplastic pollution. We report abundances of 10–70 microfibres in 50 ml of sediment, including both natural and regenerated cellulose, and synthetic plastic (polyester, acrylic, polyamide, polyethylene, and polypropylene) fibres. Following a shelf-slope-deep basin continuum approach, based on the relative abundance of fibres it would appear that coastal seas retain around 33% of the sea floor microfibres, but greater quantities of the fibres are exported to the open sea, where they accumulate in sediments. Submarine canyons act as preferential conduits for downslope transport of microfibres, with 29% of the seafloor microfibres compared to 18% found on the open slope. Around 20% of the microfibres found had accumulated in the deep open sea beyond 2000m of water depth. The remoteness of the deep sea does not prevent the accumulation of microfibres, being available to become integrated into deep sea organisms.

Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining

Jones DOB, Ardron JA, Colaço A, Durden JM. Environmental considerations for impact and preservation reference zones for deep-sea polymetallic nodule mining. Marine Policy [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S0308597X18301374
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Development of guidance for environmental management of the deep-sea mining industry is important as contractors plan to move from exploration to exploitation activities. Two priorities for environmental management are monitoring and mitigating the impacts and effects of activities. International regulation of deep-sea mining activities stipulates the creation of two types of zones for local monitoring within a claim, impact reference zones (IRZ) and preservation reference zones (PRZ). The approach used for allocating and assessing these zones will affect what impacts can be measured, and hence taken into account and managed. This paper recommends key considerations for establishing these reference zones for polymetallic nodule mining. We recommend that zones should be suitably large (Recommendation 1) and have sufficient separation (R2) to allow for repeat monitoring of representative impacted and control sites. Zones should be objectively defined following best-practice and statistically robust approaches (R3). This will include the designation of multiple PRZ and IRZ (R4) for each claim. PRZs should be representative of the mined area, and thus should contain high -quality resource (R5) but PRZs in other habitats could also be valuable (R6). Sediment plumes will influence design of PRZ and may need additional IRZ to monitor their effects (R7), which may extend beyond the boundaries of a claim (R8). The impacts of other expected changes should be taken into account (R9). Sharing PRZ design, placement, and monitoring could be considered amongst adjacent claims (R10). Monitoring should be independently verified to enhance public trust and stakeholder support (R11).

Human footprint in the abyss: 30 year records of deep-sea plastic debris

Chiba S, Saito H, Fletcher R, Yogi T, Kayo M, Miyagi S, Ogido M, Fujikura K. Human footprint in the abyss: 30 year records of deep-sea plastic debris. Marine Policy [Internet]. 2018 ;96:204 - 212. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X17305195
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

This study reports plastic debris pollution in the deep-sea based on the information from a recently developed database. The Global Oceanographic Data Center (GODAC) of the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) launched the Deep-sea Debris Database for public use in March 2017. The database archives photographs and videos of debris that have been collected since 1983 by deep-sea submersibles and remotely operated vehicles. From the 5010 dives in the database, 3425 man-made debris items were counted. More than 33% of the debris was macro-plastic, of which 89% was single-use products, and these ratios increased to 52% and 92%, respectively, in areas deeper than 6000 m. The deepest record was a plastic bag at 10898 m in the Mariana Trench. Deep-sea organisms were observed in the 17% of plastic debris images, which include entanglement of plastic bags on chemosynthetic cold seep communities. Quantitative density analysis for the subset data in the western North Pacific showed plastic density ranging from 17 to 335 items km−2 at depths of 1092–5977 m. The data show that, in addition to resource exploitation and industrial development, the influence of land-based human activities has reached the deepest parts of the ocean in areas more than 1000 km from the mainland. Establishment of international frameworks on monitoring of deep-sea plastic pollution as an Essential Ocean Variable and a data sharing protocol are the keys to delivering scientific outcomes that are useful for the effective management of plastic pollution and the conservation of deep-sea ecosystems.

The Devil in the Deep: Expanding the Known Habitat of a Rare and Protected Fish

Fetterplace LC, Turnbull JW, Knott NA, Hardy NA. The Devil in the Deep: Expanding the Known Habitat of a Rare and Protected Fish. European Journal of Ecology [Internet]. 2018 ;4(1):22 - 29. Available from: https://content.sciendo.com/view/journals/eje/4/1/article-p22.xml
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The accepted geographic range of a species is related to both opportunity and effort in sampling that range. In deepwater ecosystems where human access is limited, the geographic ranges of many marine species are likely to be underestimated. A chance recording from baited cameras deployed on deep uncharted reef revealed an eastern blue devil fish (Paraplesiops bleekeri) at a depth of 51 m and more than 2 km further down the continental shelf slope than previously observed. This is the first verifiable observation of eastern blue devil fish, a protected and endemic southeastern Australian temperate reef species, at depths greater than the typically accepted depth range of 30 m. Knowledge on the ecology of this and many other reef species is indeed often limited to shallow coastal reefs, which are easily accessible by divers and researchers. Suitable habitat for many reef species appears to exist on deeper offshore reefs but is likely being overlooked due to the logistics of conducting research on these often uncharted habitats. On the basis of our observation at a depth of 51 m and observations by recreational fishers catching eastern blue devil fishes on deep offshore reefs, we suggest that the current depth range of eastern blue devil fish is being underestimated at 30 m. We also observed several common reef species well outside of their accepted depth range. Notably, immaculate damsel (Mecaenichthys immaculatus), red morwong (Cheilodactylus fuscus), mado (Atypichthys strigatus), white-ear (Parma microlepis) and silver sweep (Scorpis lineolata) were abundant and recorded in a number of locations at up to a depth of at least 55 m. This underestimation of depth potentially represents a large area of deep offshore reefs and micro-habitats out on the continental shelf that could contribute to the resilience of eastern blue devil fish to extinction risk and contribute to the resilience of many reef species to climate change.

The physiological response of the deep-sea coral Solenosmilia variabilis to ocean acidification

Gammon MJ, Tracey DM, Marriott PM, Cummings VJ, Davy SK. The physiological response of the deep-sea coral Solenosmilia variabilis to ocean acidification. PeerJ [Internet]. 2018 ;6:e5236. Available from: https://peerj.com/articles/5236/
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Several forms of calcifying scleractinian corals provide important habitat complexity in the deep-sea and are consistently associated with a high biodiversity of fish and other invertebrates. How these corals may respond to the future predicted environmental conditions of ocean acidification is poorly understood, but any detrimental effects on these marine calcifiers will have wider impacts on the ecosystem. Colonies of Solenosmilia variabilis, a protected deep-sea coral commonly occurring throughout the New Zealand region, were collected during a cruise in March 2014 from the Louisville Seamount Chain. Over a 12-month period, samples were maintained in temperature controlled (∼3.5 °C) continuous flow-through tanks at a seawater pH that reflects the region’s current conditions (7.88) and an end-of-century scenario (7.65). Impacts on coral growth and the intensity of colour saturation (as a proxy for the coenenchyme tissue that covers the coral exoskeleton and links the coral polyps) were measured bimonthly. In addition, respiration rate was measured after a mid-term (six months) and long-term (12 months) exposure period. Growth rates were highly variable, ranging from 0.53 to 3.068 mm year−1 and showed no detectable difference between the treatment and control colonies. Respiration rates also varied independently of pH and ranged from 0.065 to 1.756 µmol O2 g protein−1 h−1. A significant change in colour was observed in the treatment group over time, indicating a loss of coenenchyme. This loss was greatest after 10 months at 5.28% and could indicate a reallocation of energy with physiological processes (e.g.  growth and respiration) being maintained at the expense of coenenchyme production. This research illustrates important first steps to assessing and understanding the sensitivity of deep-sea corals to ocean acidification.

Vertically distinct microbial communities in the Mariana and Kermadec trenches

Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A, Blanton J, Allen EE, Church MJ, Bartlett DH. Vertically distinct microbial communities in the Mariana and Kermadec trenches Smidt H. PLOS ONE [Internet]. 2018 ;13(4):e0195102. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195102
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Hadal trenches, oceanic locations deeper than 6,000 m, are thought to have distinct microbial communities compared to those at shallower depths due to high hydrostatic pressures, topographical funneling of organic matter, and biogeographical isolation. Here we evaluate the hypothesis that hadal trenches contain unique microbial biodiversity through analyses of the communities present in the bottom waters of the Kermadec and Mariana trenches. Estimates of microbial protein production indicate active populations under in situ hydrostatic pressures and increasing adaptation to pressure with depth. Depth, trench of collection, and size fraction are important drivers of microbial community structure. Many putative hadal bathytypes, such as members related to the MarinimicrobiaRhodobacteraceaeRhodospirilliceae, and Aquibacter, are similar to members identified in other trenches. Most of the differences between the two trench microbiomes consists of taxa belonging to the Gammaproteobacteria whose distributions extend throughout the water column. Growth and survival estimates of representative isolates of these taxa under deep-sea conditions suggest that some members may descend from shallower depths and exist as a potentially inactive fraction of the hadal zone. We conclude that the distinct pelagic communities residing in these two trenches, and perhaps by extension other trenches, reflect both cosmopolitan hadal bathytypes and ubiquitous genera found throughout the water column.

Pages

Subscribe to RSS - Deep-sea ecosystems and hydrothermal vents