Distributions of Species

Habitat zonation on coral reefs: Structural complexity, nutritional resources and herbivorous fish distributions

Oakley-Cogan A, Tebbett SB, Bellwood DR. Habitat zonation on coral reefs: Structural complexity, nutritional resources and herbivorous fish distributions Patterson HM. PLOS ONE [Internet]. 2020 ;15(6):e0233498. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233498
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Distinct zonation of community assemblages among habitats is a ubiquitous feature of coral reefs. The distribution of roving herbivorous fishes (parrotfishes, surgeonfishes and rabbitfishes) is a particularly clear example, with the abundance of these fishes generally peaking in shallow-water, high-energy habitats, regardless of the biogeographic realm. Yet, our understanding of the factors which structure this habitat partitioning, especially with regards to different facets of structural complexity and nutritional resource availability, is limited. To address this issue, we used three-dimensional photogrammetry and structure-from-motion technologies to describe five components of structural complexity (rugosity, coral cover, verticality, refuge density and field-of-view) and nutritional resource availability (grazing surface area) among habitats and considered how these factors are related to herbivorous fish distributions. All complexity metrics (including coral cover) were highest on the slope and crest. Nutritional resource availability differed from this general pattern and peaked on the outer-flat. Unexpectedly, when compared to the distribution of herbivorous fishes, none of the complexity metrics had a marked influence in the models. However, grazing surface area was a strong predictor of both the abundance and biomass of herbivorous fishes. The strong relationship between grazing surface area and herbivorous fish distributions indicates that nutritional resource availability may be one of the primary factors driving the distribution of roving herbivorous fishes. The lack of a relationship between complexity and herbivorous fishes, and a strong affinity of herbivorous fishes for low-complexity, algal turf-dominated outer-flat habitats, offers some cautious optimism that herbivory may be sustained on future, low-complexity, algal turf-dominated reef configurations.

Pathways of Pelagic Connectivity: Eukrohnia hamata (Chaetognatha) in the Arctic Ocean

DeHart HM, Blanco-Bercial L, Passacantando M, Questel JM, Bucklin A. Pathways of Pelagic Connectivity: Eukrohnia hamata (Chaetognatha) in the Arctic Ocean. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00396/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The dramatic warming of the Arctic Ocean will impact pelagic ecosystems in complex ways, including shifting patterns of species distribution and abundance, and altering migration pathways and population connectivity. Species of the Phylum Chaetognatha (arrow worms) are abundant in the zooplankton assemblage and are highly effective predators, with key roles in pelagic food webs. They are useful indicator species for impacts of climate change on marine ecosystems. This study examined the population genetic diversity, structure and connectivity of the chaetognath, Eukrohnia hamata, based on sampling from six regions defined by geography, bathymetry, and major currents flowing through the Arctic Ocean. A 528-base pair sequenced region of mitochondrial cytochrome oxidase I (mtCOI) analyzed for 131 specimens resulted in 78 haplotypes and very high haplotype diversity. Analysis of mtCOI haplotype frequencies provided no evidence of population genetic structure. Genomic Single Nucleotide Polymorphisms (SNPs) detected from the same specimens by double-digest Restriction-site Associated Digestion (ddRAD) confirmed high levels of gene flow among the regions, but supported the genetic distinctiveness of two population clusters: Atlantic–Arctic versus Pacific–Arctic. Removal of SNPs subject to selection resulted in slightly higher probability of three clusters, and suggested the possibility of local adaptation of regional populations of E. hamata. Comparative analysis revealed evidence that random selection of subsets of SNPs, perhaps impacted by different ecological and (micro) evolutionary drivers, can result in marked differences in numbers and distributional patterns of clusters and associated variation in F-statistics. Analysis of population connectivity using SNPs supported the primary migration pathway via flow from the Atlantic to the Pacific Arctic regions.

Connecting Crabs, Currents, and Coastal Communities: Examining the Impacts of Changing Ocean Conditions on the Distribution of U.S. West Coast Dungeness Crab Commercial Catch

Magel CL, Lee EMJ, Strawn AM, Swieca K, Jensen AD. Connecting Crabs, Currents, and Coastal Communities: Examining the Impacts of Changing Ocean Conditions on the Distribution of U.S. West Coast Dungeness Crab Commercial Catch. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00401/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Dungeness crab (Cancer magister) is one of the most lucrative fisheries on the United States (U.S.) west coast. There have been large spatial and temporal fluctuations in catch, which reflect the interconnected influences of the coupled natural-human fishery system. Changing ocean conditions are likely to further alter the magnitude and distribution of Dungeness crab catch, the impacts of which will propagate ecologically and through the social systems of fishing communities. Therefore, the effect of changing ocean conditions on U.S. west coast Dungeness crab catch per unit effort (CPUE) was used as an interdisciplinary case study to examine the susceptibility, a metric that integrates Dungeness crab reliance and social vulnerability indices, of coastal communities to changes in the fishery. Statistical models indicated that ocean conditions influence commercial CPUE 3–5 years later and that CPUE is likely to decline in the future as ocean conditions change. In particular, sea surface temperature scenarios for 2080 (+1.7 and +2.8°C) reduced Dungeness crab CPUE by 30–100%, depending on fishing port latitude. Declines in Dungeness crab CPUE were greater for southern port communities than for northern port communities under both scenarios – demonstrating greater exposure at the southern end of the species range. We show that U.S. west coast communities are differentially susceptible to a decline in Dungeness crab catch, with Washington communities being at least five times more susceptible than California communities. Our overall assessment showed varying levels of risk (a combination of exposure and susceptibility) for Dungeness crab fishing ports that do not necessarily align with regional or fishery management boundaries.

The Tropical Seagrass Halophila stipulacea: Reviewing What We Know From Its Native and Invasive Habitats, Alongside Identifying Knowledge Gaps

Winters G, Beer S, Willette DA, Viana IG, Chiquillo KL, Beca-Carretero P, Villamayor B, Azcárate-García T, Shem-Tov R, Mwabvu B, et al. The Tropical Seagrass Halophila stipulacea: Reviewing What We Know From Its Native and Invasive Habitats, Alongside Identifying Knowledge Gaps. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00300/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Halophila stipulacea is a small tropical seagrass, native to the Red Sea, Persian Gulf, and the Indian Ocean. It invaded the Mediterranean Sea 150 years ago as a Lessepsian migrant, but so far has remained in insulated, small populations across this basin. Surprisingly, in 2002 it was reported in the Caribbean Sea, where within less than two decades it spread to most of the Caribbean Island nations and reaching the South American continent. Unlike its invasion of Mediterranean, in the Caribbean H. stipulacea creates large, continuous populations in many areas. Reports from the Caribbean demonstrated the invasiveness of H. stipulacea by showing that it displaces local Caribbean seagrass species. The motivation for this review comes from the necessity to unify the existing knowledge on several aspects of this species in its native and invasive habitats, identify knowledge gaps and develop a critical strategy to understand its invasive capacity and implement an effective monitoring and conservation plan to mitigate its potential spread outside its native ranges. We systematically reviewed 164 studies related to H. stipulacea to create the “Halophila stipulacea database.” This allowed us to evaluate the current biological, ecological, physiological, biochemical, and molecular knowledge of H. stipulacea in its native and invasive ranges. Here we (i) discuss the possible environmental conditions and plant mechanisms involved in its invasiveness, (ii) assess the impact of H. stipulacea on native seagrasses and ecosystem functions in the invaded regions, (iii) predict the ability of this species to invade European and transoceanic coastal waters, (iv) identify knowledge gaps that should be addressed to better understand the biology and ecology of this species both in its native and non-native habitats, which would improve our ability to predict H. stipulacea's potential to expand into new areas in the future. Considering the predicted climate change scenarios and exponential human pressures on coastal areas, we stress the need for coordinated global monitoring and mapping efforts that will record changes in H. stipulacea and its associated communities over time, across its native, invasive and prospective distributional ranges. This will require the involvement of biologists, ecologists, economists, modelers, managers, and local stakeholders.

The Importance of the Northeastern Gulf of Mexico to Foraging Loggerhead Sea Turtles

Hart KM, Lamont MM, Iverson AR, Smith BJ. The Importance of the Northeastern Gulf of Mexico to Foraging Loggerhead Sea Turtles. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00330/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1334659_45_Marine_20200521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Identification of high-use foraging sites where imperiled sea turtles are resident remains a globally-recognized conservation priority. In the biodiverse Gulf of Mexico (GoM), recent telemetry studies highlighted post-nesting foraging sites for federally threatened loggerhead turtles (Caretta caretta). Our aim here was to discern loggerhead use of additional northern GoM regions that may serve as high-use foraging sites. Thus, we used satellite tracking and switching state-space modeling to show that the Big Bend region off the northwest Florida coast is a coastal foraging area that supports imperiled adult female loggerhead turtles tracked from different nesting subpopulations. From 2011 to 2016, we satellite-tagged 15 loggerheads that nested on four distinct beaches around the GoM: Dry Tortugas National Park, FL; Everglades National Park, FL; St. Joseph Peninsula, FL; and Gulf Shores, AL. Turtles arrived at their foraging ground in the Big Bend region between June and September and remained resident in their respective foraging sites for an average of 198 tracking days, where they established mean home ranges (95% kernel density estimate) 232.7 km2. Larger home ranges were in deeper water; 50% kernel density estimate centroid values were a mean 26.4 m deep and 52.7 km from shore. The Big Bend region provides a wide area of suitable year-round foraging habitat for loggerheads from at least 3 different nesting subpopulations. Understanding where and when threatened loggerheads forage and remain resident is key for designing both surveys of foraging resources and additional protection strategies that can impact population recovery trajectories for this imperiled species.

Passive acoustic methods for tracking the 3D movements of small cetaceans around marine structures

Gillespie D, Palmer L, Macaulay J, Sparling C, Hastie G. Passive acoustic methods for tracking the 3D movements of small cetaceans around marine structures Halliday WDavid. PLOS ONE [Internet]. 2020 ;15(5):e0229058. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229058
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

A wide range of anthropogenic structures exist in the marine environment with the extent of these set to increase as the global offshore renewable energy industry grows. Many of these pose acute risks to marine wildlife; for example, tidal energy generators have the potential to injure or kill seals and small cetaceans through collisions with moving turbine parts. Information on fine scale behaviour of animals close to operational turbines is required to understand the likely impact of these new technologies. There are inherent challenges associated with measuring the underwater movements of marine animals which have, so far, limited data collection. Here, we describe the development and application of a system for monitoring the three-dimensional movements of cetaceans in the immediate vicinity of a subsea structure. The system comprises twelve hydrophones and software for the detection and localisation of vocal marine mammals. We present data demonstrating the systems practical performance during a deployment on an operational tidal turbine between October 2017 and October 2019. Three-dimensional locations of cetaceans were derived from the passive acoustic data using time of arrival differences on each hydrophone. Localisation accuracy was assessed with an artificial sound source at known locations and a refined method of error estimation is presented. Calibration trials show that the system can accurately localise sounds to 2m accuracy within 20m of the turbine but that localisations become highly inaccurate at distances greater than 35m. The system is currently being used to provide data on rates of encounters between cetaceans and the turbine and to provide high resolution tracking data for animals close to the turbine. These data can be used to inform stakeholders and regulators on the likely impact of tidal turbines on cetaceans.

Hurricane Frequency and Intensity May Decrease Dispersal of Kemp’s Ridley Sea Turtle Hatchlings in the Gulf of Mexico

DuBois MJ, Putman NF, Piacenza SE. Hurricane Frequency and Intensity May Decrease Dispersal of Kemp’s Ridley Sea Turtle Hatchlings in the Gulf of Mexico. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00301/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1334659_45_Marine_20200521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Environmental variability can be an important factor in the population dynamics of many species. In marine systems, for instance, whether environmental conditions facilitate or impede the movements of juvenile animals to nursery habitat can have a large influence on subsequent population abundance. Both subtle differences in the position of oceanographic features (such as meandering currents) and major disturbances (such as hurricanes) can greatly alter dispersal outcomes. Here, we use an ocean circulation model to explore seasonal and annual variation in the dispersal of post-hatchling Kemp’s ridley sea turtles (Lepidochelys kempii). We simulated the transport of 24 cohorts of young-of-the-year Kemp’s ridley sea turtles dispersing from the three primary nesting areas in the western Gulf of Mexico to describe variability in transport during the main hatching season and across years. We examined whether differences in transport distance among Kemp’s ridley cohorts could be explained by hurricane events. We found that years with high numbers of hurricanes corresponded to shorter dispersal distances and less variance within the first 6 months. Our findings suggest that differences in dispersal among sites and the impact of hurricane frequency and intensity could influence the survivorship and somatic growth rates of turtles from different nesting sites and hatching cohorts, either improving survival by encouraging retention in optimal pelagic habitat or decreasing survival by pushing hatchlings into dangerous shallow habitats. Considering such factors in future population assessments may aid in predicting how the potential for increasing tropical storms, a phenomenon linked to climate change, could affect Kemp’s ridley and other populations of sea turtles in the Atlantic Ocean.

Differential migration in Chesapeake Bay striped bass

Secor DH, O’Brien MHP, Gahagan BI, J. Watterson C, Fox DA. Differential migration in Chesapeake Bay striped bass Ottersen G. PLOS ONE [Internet]. 2020 ;15(5):e0233103. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0233103
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Differential migration—increased migration propensity with increasing individual size—is common in migratory species. Like other forms of partial migration, it provides spatial buffering against regional differences in habitat quality and sources of mortality. We investigated differential migration and its consequences to survival and reproductive patterns in striped bass, a species with well-known plasticity in migration behaviors. A size-stratified sample of Potomac River (Chesapeake Bay) Morone saxatilis striped bass was implanted with acoustic transmitters and their subsequent coastal shelf migrations recorded over a 4-yr period by telemetry receivers throughout the Mid-Atlantic Bight and Southern New England. A generalized linear mixed model predicted that ≥ 50% of both males and females depart the Chesapeake Bay at large sizes >80 cm total length. Egressing striped bass exited through both the Chesapeake Bay mouth and Delaware Bay (via the Chesapeake and Delaware Canal), favoring the former. All large fish migrated to Massachusetts shelf waters and in subsequent years repeatedly returned to regions within Massachusetts and Cape Cod Bays. Within this dominant behavior, minority behaviors included straying, skipped spawning, and residency by large individuals (those expected to migrate). Analysis of the last day of transmission indicated that small resident striped bass experienced nearly 2-fold higher loss rates (70% yr-1) than coastal shelf emigrants (37% yr-1). The study confirmed expectations for a threshold size at emigration and different mortality levels between Chesapeake Bay (resident) and ocean (migratory) population contingents; and supported the central premise of the current assessment and management framework of a two-contingent population: smaller Chesapeake Bay residents and a larger ocean contingent. An improved understanding of differential migration thus affords an opportunity to specify stock assessments according to different population sub-components, and tailor reference points and control rules between regions and fishing stakeholder groups.

Jellyfish distribution in space and time predicts leatherback sea turtle hot spots in the Northwest Atlantic

Nordstrom B, James MC, Worm B. Jellyfish distribution in space and time predicts leatherback sea turtle hot spots in the Northwest Atlantic Patterson HM. PLOS ONE [Internet]. 2020 ;15(5):e0232628. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232628
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Leatherback sea turtles (Dermochelys coriacea) migrate to temperate Canadian Atlantic waters to feed on gelatinous zooplankton (‘jellyfish’) every summer. However, the spatio-temporal connection between predator foraging and prey-field dynamics has not been studied at the large scales over which these migratory animals occur. We use 8903 tows of groundfish survey jellyfish bycatch data between 2006–2017 to reveal spatial jellyfish hot spots, and matched these data to satellite-telemetry leatherback data over time and space. We found highly significant overlap of jellyfish and leatherback distribution on the Scotian Shelf (r = 0.89), moderately strong correlations of jellyfish and leatherback spatial hot spots in the Gulf of St. Lawrence (r = 0.59), and strong correlations in the Bay of Fundy (r = 0.74), which supports much lower jellyfish density. Over time, jellyfish bycatch data revealed a slight northward range shift in the Gulf of St. Lawrence, consistent with gradual warming of these waters. Two-stage generalized linear modelling corroborated that sea surface temperature, year, and region were significant predictors of jellyfish biomass, suggesting a climate signal on jellyfish distribution, which may shift leatherback critical feeding habitat over time. These findings are useful in predicting dynamic habitat use for endangered leatherback turtles, and can help to anticipate large-scale changes in their distribution in response to climate-related changes in prey availability.

Satellite derived offshore migratory movements of southern right whales (Eubalaena australis) from Australian and New Zealand wintering grounds

Mackay AI, Bailleul F, Carroll EL, Andrews-Goff V, C. Baker S, Bannister J, Boren L, Carlyon K, Donnelly DM, Double M, et al. Satellite derived offshore migratory movements of southern right whales (Eubalaena australis) from Australian and New Zealand wintering grounds Li S. PLOS ONE [Internet]. 2020 ;15(5):e0231577. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231577
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Southern right whales (Eubalaena australis) migrate between Austral-winter calving and socialising grounds to offshore mid- to high latitude Austral-summer feeding grounds. In Australasia, winter calving grounds used by southern right whales extend from Western Australia across southern Australia to the New Zealand sub-Antarctic Islands. During the Austral-summer these whales are thought to migrate away from coastal waters to feed, but the location of these feeding grounds is only inferred from historical whaling data. We present new information on the satellite derived offshore migratory movements of six southern right whales from Australasian wintering grounds. Two whales were tagged at the Auckland Islands, New Zealand, and the remaining four at Australian wintering grounds, one at Pirates Bay, Tasmania, and three at Head of Bight, South Australia. The six whales were tracked for an average of 78.5 days (range: 29 to 150) with average individual distance of 38 km per day (range: 20 to 61 km). The length of individually derived tracks ranged from 645–6,381 km. Three likely foraging grounds were identified: south-west Western Australia, the Subtropical Front, and Antarctic waters, with the Subtropical Front appearing to be a feeding ground for both New Zealand and Australian southern right whales. In contrast, the individual tagged in Tasmania, from a sub-population that is not showing evidence of post-whaling recovery, displayed a distinct movement pattern to much higher latitude waters, potentially reflecting a different foraging strategy. Variable population growth rates between wintering grounds in Australasia could reflect fidelity to different quality feeding grounds. Unlike some species of baleen whale populations that show movement along migratory corridors, the new satellite tracking data presented here indicate variability in the migratory pathways taken by southern right whales from Australia and New Zealand, as well as differences in potential Austral summer foraging grounds.

Pages

Subscribe to RSS - Distributions of Species