Ecosystem Assessment

Application of the Ocean Health Index to assess ecosystem health for the coastal areas of Shanghai, China

Wu Z, Chen R, Meadows ME, Liu X. Application of the Ocean Health Index to assess ecosystem health for the coastal areas of Shanghai, China. Ecological Indicators [Internet]. 2021 ;126:107650. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X21003150?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ocean delivers many ecosystem services to human society in providing food, livelihoods, and recreation and is crucial for regulating the global climate. Coastal cities, which have become the backbone of national economies, are highly dependent on the ecosystem services supported by the ocean. As a global coastal megacity, Shanghai has benefited enormously from its relationship with the ocean but its burgeoning population and rampant economic development in recent decades have applied great pressures on the associated coastal ecosystems and have reduced the ocean's capacity to provide ecosystem services and, meanwhile, have led to the demand for greater investment in ocean ecosystem restoration. To support the goal of long-term sustainability and facilitate appropriate management decisions, it is essential to assess the current health status of the coastal ecosystems of Shanghai and evaluate potential future risks. Here we apply the Ocean Health Index (OHI) framework, with indicators and reference points adjusted based on the unique coastal environment in Shanghai. The results reveal that the city obtained an overall OHI of 59 (out of 100) for the period 2012 to 2016. Individual indicators for Clean Waters (22) and Fisheries (39) exhibit particularly low values, indicating that the coastal waters around Shanghai are heavily polluted and that marine fishing is unsustainable. The city’s highest OHI scores are in the sectors of Coastal Livelihoods and Economies (93), and Tourism and Recreation (93), indicating that Shanghai’s coastal ecosystems contribute significantly to people’s livelihoods and regional economies, while marine recreational areas and related leisure activities add considerably to the quality of life in the region. This study demonstrates the value of the OHI in assessing ocean health at the city scale and reveals its potential for application in other coastal localities. In so doing, the findings provide a valuable benchmark against which to measure progress towards the sustainable development of Shanghai's oceans.

A Synthesis of Marine Monitoring Methods With the Potential to Enhance the Status Assessment of the Baltic Sea

Mack L, Attila J, Aylagas E, Beermann A, Borja A, Hering D, Kahlert M, Leese F, Lenz R, Lehtiniemi M, et al. A Synthesis of Marine Monitoring Methods With the Potential to Enhance the Status Assessment of the Baltic Sea. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.552047/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

A multitude of anthropogenic pressures deteriorate the Baltic Sea, resulting in the need to protect and restore its marine ecosystem. For an efficient conservation, comprehensive monitoring and assessment of all ecosystem elements is of fundamental importance. The Baltic Marine Environment Protection Commission HELCOM coordinates conservation measures regulated by several European directives. However, this holistic assessment is hindered by gaps within the current monitoring schemes. Here, twenty-two novel methods with the potential to fill some of these gaps and improve the monitoring of the Baltic marine environment are examined. We asked key stakeholders to point out methods likely to improve current Baltic Sea monitoring. We then described these methods in a comparable way and evaluated them based on their costs and applicability potential (i.e., possibility to make them operational). Twelve methods require low to very low costs, while five require moderate and two high costs. Seventeen methods were rated with a high to very high applicability, whereas four methods had moderate and one low applicability for Baltic Sea monitoring. Methods with both low costs and a high applicability include the Manta Trawl, Rocket Sediment Corer, Argo Float, Artificial Substrates, Citizen Observation, Earth Observation, the HydroFIA®pH system, DNA Metabarcoding and Stable Isotope Analysis.

Phytoplankton Diversity Effect on Ecosystem Functioning in a Coastal Upwelling System

Otero J, Álvarez-Salgado XAntón, Bode A. Phytoplankton Diversity Effect on Ecosystem Functioning in a Coastal Upwelling System. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.592255/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Species composition plays a key role in ecosystem functioning. Theoretical, experimental and field studies show positive effects of biodiversity on ecosystem processes. However, this link can differ between taxonomic and functional diversity components and also across trophic levels. These relationships have been hardly studied in planktonic communities of coastal upwelling systems. Using a 28-year time series of phytoplankton and zooplankton assemblages, we examined the effects of phytoplankton diversity on resource use efficiency (RUE, ratio of biomass to limiting resource) at the two trophic levels in the Galician upwelling system (NW Iberian peninsula). By fitting generalized least square models, we show that phytoplankton diversity was the best predictor for RUE across planktonic trophic levels. This link varied depending on the biodiversity component considered: while the effect of phytoplankton richness on RUE was positive for phytoplankton RUE and negative for zooplankton RUE, phytoplankton evenness effect was negative for phytoplankton RUE and positive for zooplankton RUE. Overall, taxonomic diversity had higher explanatory power than functional diversity, and variability in phytoplankton and zooplankton RUE decreased with increasing phytoplankton taxonomic diversity. Phytoplankton used resources more efficiently in warmer waters and at greater upwelling intensity, although these effects were not as strong as those for biodiversity. These results suggest that phytoplankton species numbers in highly dynamic upwelling systems are important for maintaining the planktonic biomass production leading us to hypothesize the relevance of complementarity effects. However, we further postulate that a selection effect may operate also because assemblages with low evenness were dominated by diatoms with specific functional traits increasing their ability to exploit resources more efficiently.

Overcoming the Obstacles Faced by Early Career Researchers in Marine Science: Lessons From the Marine Ecosystem Assessment for the Southern Ocean

Brasier MJ, McCormack S, Bax N, Caccavo JA, Cavan E, Ericson JA, Figuerola B, Hancock A, Halfter S, Hellessey N, et al. Overcoming the Obstacles Faced by Early Career Researchers in Marine Science: Lessons From the Marine Ecosystem Assessment for the Southern Ocean. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00692/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1418755_45_Marine_20200903_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Pressure in academia and science is rapidly increasing and early career researchers (ECRs) have a lot to gain from being involved in research initiatives such as large international projects. But just how inclusive are they? Here we discuss experiences of ECRs directly involved in the Marine Ecosystem Assessment for the Southern Ocean (MEASO), an Australian led international research project to assess the status and trends of Southern Ocean ecosystems. We review the benefits of ECR involvement in large-scale initiatives to the project deliverables, the leadership team and ECRs themselves. Using insights from MEASO, we outline the obstacles that may become barriers to ECRs in scientific research in general but with a focus on large-scale research projects and suggest potential actions to overcome these at the individual, institutional and scientific community level. We consider the potential for ECRs to lead future Antarctic science programmes with a focus on science communication and applied research for policy makers within a global setting.

Identification of a Soft Coral Garden Candidate Vulnerable Marine Ecosystem (VME) Using Video Imagery, Davis Strait, West Greenland

Long S, Sparrow-Scinocca B, Blicher ME, Arboe NHammeken, Fuhrmann M, Kemp KM, Nygaard R, Zinglersen K, Yesson C. Identification of a Soft Coral Garden Candidate Vulnerable Marine Ecosystem (VME) Using Video Imagery, Davis Strait, West Greenland. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00460/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The term vulnerable marine ecosystem (VME) was introduced to facilitate the spatial management of deep-seas, identifying those habitats vulnerable to anthropogenic disturbance, such as trawling. Consistent interpretation of the VME definition has been hampered by an underlying paucity of knowledge about the nature and distribution of deep-sea habitats. Photographic and video platforms yield data rich, quantifiable imagery to address these knowledge gaps. A low-cost towed benthic video sled has been used to investigate deep-sea habitats and trawling impacts in west Greenland. A review of imagery from multiple cruises highlighted an area where benthic megafauna contributes to notable structural complexity on the continental slope of the Toqqusaq Bank. Quantitative analysis of imagery from this area provides the first description of a soft coral garden habitat and other communities. The coral garden and observed densities are considered in relation to the VME guidelines (FAO, 2009) and wider literature. The study proposes a 486 km2 area spanning ∼60 km of continental slope as a VME. This has direct implications for the management of economically important deep-sea trawl fisheries, which are immediately adjacent. This furthers our knowledge and understanding of VMEs in North Atlantic, in a previously understudied region and demonstrates the utility of a low-cost video sled for identifying and describing VMEs.

Influence of Deep-Water Corals and Sponge Gardens on Infaunal Community Composition and Ecosystem Functioning in the Eastern Canadian Arctic

Pierrejean M, Grant C, Neves Bde Moura, Chaillou G, Edinger E, F. Blanchet G, Maps F, Nozais C, Archambault P. Influence of Deep-Water Corals and Sponge Gardens on Infaunal Community Composition and Ecosystem Functioning in the Eastern Canadian Arctic. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00495/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The relationships between infaunal diversity and ecosystem function of biogenic structures in the Eastern Canadian Arctic remain poorly documented. Our study investigated the influence of sponge gardens at the Frobisher Bay site (137 m) and bamboo corals at the Baffin Bay site (1007 m) on the infaunal community structure and benthic ecosystem functioning. The occurrence of both types of biogenic structure type enhanced particular taxa and/or feeding guilds. A large density of suspension filter feeders was observed in bamboo coral sediment, whereas bare sediment exhibited a large proportion of nematodes and deposit-detritus feeders. Sponge gardens’ sediment showed a high proportion of isopods, Paraonidae polychaetes and up/down conveyors whereas bare sediment exhibited a large density of filter feeders. Through incubation cores, we measured ex situ benthic nutrient and oxygen fluxes at the sediment-water interface in each habitat and site. Biogeochemical fluxes varied significantly between habitats in the Baffin Bay site with a significant impact of bamboo coral habitat on nutrient fluxes (nitrate, ammonium, and silicate). Surprisingly, the sediment hosting bamboo corals acted as a source of nitrate and ammonium reaching values similar or higher to the Frobisher site despite the difference in water depth, and thus food supply between the two sites. These significant releases could derive from (i) a high organic matter deposition in bamboo coral habitat, allowed by their erected structure, (ii) a high efficiency of bioturbators (surficial modifiers and burrowers) mixing the surface layer of the sediment, and (iii) the difference in sediment type. Our study highlighted that, compared to its adjacent habitat, the presence of bamboo corals appeared to enhance the infaunal density and nutrient release of its sediment. In contrast, the impact of sponge gardens was not as clear as for bamboo coral habitat, likely due to the relatively significant presence of megabiota in the sponge garden adjacent habitat. Thus, our results based on a relatively small sample size, indicate that the bamboo coral habitat seems to increase the efficiency of deep-benthic ecosystem functioning, while that of sponge garden on the shallow ecosystem functioning remains uncertain.

The Status of Coastal Benthic Ecosystems in the Mediterranean Sea: Evidence From Ecological Indicators

Bevilacqua S, Katsanevakis S, Micheli F, Sala E, Rilov G, Sarà G, Malak DAbdul, Abdulla A, Gerovasileiou V, Gissi E, et al. The Status of Coastal Benthic Ecosystems in the Mediterranean Sea: Evidence From Ecological Indicators. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00475/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Mediterranean Sea is subject to multiple human pressures increasingly threatening its unique biodiversity. Spatially explicit information on the ecological status of marine ecosystems is therefore key to an effective maritime spatial planning and management, and to help the achievement of environmental targets. Here, we summarized scientific data on the ecological status of a selection of marine ecosystems based on a set of ecological indicators in more than 700 sites of the Mediterranean Sea. For Posidonia oceanica seagrass beds, rocky intertidal fringe, and coastal soft bottoms, more than 70% of investigated sites exhibited good to high ecological conditions. In contrast, about two-thirds of sites for subtidal rocky reefs were classified to be in moderate to bad conditions, stressing the need for prioritizing conservation initiatives on these productive and diverse environments. Very little quantitative information was available for the southern Mediterranean Sea, thus monitoring programs and assessments in this area are essential for a representative assessment of the health of marine coastal ecosystems in the whole basin. This overview represents a first step to implement a baseline that, through georeferenced data on ecological status, could help identifying information gaps, directing future research priorities, and supporting improvements to spatial models of expected cumulative impacts on marine ecosystems.

Using qualitative network models to assess the influence of mussel culture on ecosystem dynamics

Forget NL, Duplisea DE, Sardenne F, McKindsey CW. Using qualitative network models to assess the influence of mussel culture on ecosystem dynamics. Ecological Modelling [Internet]. 2020 ;430:109070. Available from: https://www.sciencedirect.com/science/article/pii/S0304380020301423
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The expansion of the aquaculture industry in the last several decades has raised concerns about potential ecological impacts of the industry. Bivalve culture, particularly mussel farming, relies on naturally occurring plankton and numerous studies have demonstrated top-down control on phytoplankton, increased nutrients through excretion of metabolic wastes and remineralization of faeces and pseudofaeces, and bottom-up effects on predators and scavengers through mussel fall-off. However, results are inconsistent between studies, and hydrodynamic conditions and nutrient availability are thought to play an important role in the magnitude and the direction of the ecological effects of mussel culture on the surrounding ecosystem. We used qualitative network models (QNMs), to outline a general model that integrates these environmental conditions and (1) evaluated the ability of different model configurations to reproduce known responses to perturbations, (2) analyzed the behaviour of key components to contrasting hydrodynamic and nutrient condition scenarios, and (3) identified the most influential features of the derived scenarios. The model that included uncertain linkages to characterize unknown relationships performed best based on predetermined validation criteria; the addition of semi-quantitative information on the relative strength of certain linkages improved accuracy and sign determinacy of outcomes. The presence of suspended mussel culture negatively affected primary producers, zooplankton and deposit-feeders, and had a positive effect on predators and scavengers, especially in low-energy environments. Hydrodynamic conditions were shown to have a major impact on the response of the community to mussel culture, while nutrient availability had a very minor impact.

Resilience assessment of Puerto Rico’s coral reefs to inform reef management

Gibbs DA, West JM. Resilience assessment of Puerto Rico’s coral reefs to inform reef management Pittman S. PLOS ONE [Internet]. 2019 ;14(11):e0224360. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224360
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Globally increasing sea surface temperatures threaten coral reefs, both directly and through interactions with local stressors. More resilient reefs have a higher likelihood of returning to a coral-dominated state following a disturbance, such as a mass bleaching event. To advance practical approaches to reef resilience assessments and aid resilience-based management of coral reefs, we conducted a resilience assessment for Puerto Rico’s coral reefs, modified from methods used in other U.S. jurisdictions. We calculated relative resilience scores for 103 sites from an existing commonwealth-wide survey using eight resilience indicators—such as coral diversity, macroalgae percent cover, and herbivorous fish biomass—and assessed which indicators most drove resilience. We found that sites of very different relative resilience were generally highly spatially intermixed, underscoring the importance and necessity of decision making and management at fine scales. In combination with information on levels of two localized stressors (fishing pressure and pollution exposure), we used the resilience indicators to assess which of seven potential management actions could be used at each site to maintain or improve resilience. Fishery management was the management action that applied to the most sites. Furthermore, we combined sites’ resilience scores with projected ocean warming to assign sites to vulnerability categories. Island-wide or community-level managers can use the actions and vulnerability information as a starting point for resilience-based management of their reefs. This assessment differs from many previous ones because we tested how much information could be yielded by a “desktop” assessment using freely-available, existing data rather than from a customized, resilience-focused field survey. The available data still permitted analyses comparable to previous assessments, demonstrating that desktop resilience assessments can substitute for assessments with field components under some circumstances.

A multidisciplinary coastal vulnerability assessment for local government focused on ecosystems, Santa Barbara area, California

Myers MR, Barnard PL, Beighley E, Cayan DR, Dugan JE, Feng D, Hubbard DM, Iacobellis SF, Melack JM, Page HM. A multidisciplinary coastal vulnerability assessment for local government focused on ecosystems, Santa Barbara area, California. Ocean & Coastal Management [Internet]. In Press :104921. Available from: https://www.sciencedirect.com/science/article/pii/S0964569119303461?dgcid=raven_sd_search_email
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

Incorporating coastal ecosystems in climate adaptation planning is needed to maintain the well-being of both natural and human systems. Our vulnerability study uses a multidisciplinary approach to evaluate climate change vulnerability of an urbanized coastal community that could serve as a model approach for communities worldwide, particularly in similar Mediterranean climates. We synthesize projected changes in climate, coastal erosion and flooding, watershed runoff and impacts to two important coastal ecosystems, sandy beaches and coastal salt marshes. Using downscaled climate models along with other regional models, we find that temperature, extreme heat events, and sea level are expected to increase in the future, along with more intense rainfall events, despite a negligible change in annual rainfall. Consequently, more droughts are expected but the magnitude of larger flood events will increase. Associated with the continuing rise of mean sea level, extreme coastal water levels will occur with increasingly greater magnitudes and frequency. Severe flooding will occur for both natural (wetlands, beaches) and built environments (airport, harbor, freeway, and residential areas). Adaptation actions can reduce the impact of rising sea level, which will cause losses of sandy beach zones and salt marsh habitats that support the highest biodiversity in these ecosystems, including regionally rare and endangered species, with substantial impacts occurring by 2050. Providing for inland transgression of coastal habitats, effective sediment management, reduced beach grooming and removal of shoreline armoring are adaptations that would help maintain coastal ecosystems and the beneficial services they provide.

Pages

Subscribe to RSS - Ecosystem Assessment