Ecosystem-based Management (EBM)

Can we enhance ecosystem-based coastal defense by connecting oysters to marsh edges? Analyzing the limits of oyster reef establishment

Fivash GS, Stüben D, Bachmann M, Walles B, van Belzen J, Didderen K, Temmink RJM, Lengkeek W, van der Heide T, Bouma TJ. Can we enhance ecosystem-based coastal defense by connecting oysters to marsh edges? Analyzing the limits of oyster reef establishment. Ecological Engineering [Internet]. 2021 ;165:106221. Available from: https://www.sciencedirect.com/science/article/pii/S0925857421000768?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Nature-based coastal defense schemes commonly value bivalve reefs for i) reducing coastal erosion in the intertidal and for ii) forming fringing reefs near salt marsh edges to protect them against lateral retreat. The capacity for a reef to reduce erosion increases at a higher position in the tidal frame as the lower over-lying water level magnifies the influence of the reef on wave attenuation. Unfortunately, ecological constraints on reef development typically limit their practical application in coastal protection schemes to the lower intertidal, as bivalves grow best with long inundation times. In micro-tidal areas this is a lesser problem, given the close proximity of lower and upper intertidal ecosystems in space. By contrast, in meso- and macro-tidal estuaries, bivalve reefs tend to form hundreds of meters away from existing marshes, nullifying any wave-protective benefits. In this study, we produce evidence that with the assistance of management measures, widespread reef formation is possible on open mudflats, including bordering the marsh edge in meso- and macro-tidal estuaries, where natural reef formation is normally strongly limited.

In four locations throughout the meso- to macro-tidal Dutch Scheldt estuary, we observed the presence of individuals of two major intertidal reef-forming bivalves, Pacific oysters (Crassostrea gigas) and blue mussels (Mytilus edulis), within low-lying Spartina anglica-dominated marshes. As these communities lie well outside of the expected range of reef formation, this observation suggests the existence of mechanisms that extend the habitable range of these bivalves. In a series of field experiments, we first demonstrate how the stabilization of shell-substrate within the marsh promotes successful establishment and adult survival. Secondly, by placing artificial stable substrate in transects from the subtidal up to the marsh edge, we demonstrate that bivalve establishment is possible throughout a much larger range of the intertidal than where natural reefs occur. The effectiveness of stable substrate in stimulating bivalve establishment is likely a consequence of bridging size-dependent thresholds that limit the effective range for natural reef formation on tidal flats. The success of this approach is tempered by a consistent decrease in reef size and growth at higher elevations, suggesting that the optimal reef position for utility in coastal defense lies at an intermediate tidal position, well above the observed range of natural occurrence, but below the maximum achievable upper limit of reef formation. Together this work provides a pathway forward concerning how artificial reefs may be fostered to increase their utility as a nature-based flood defense measure.

Managing multiple pressures for cetaceans’ conservation with an Ecosystem-Based Marine Spatial Planning approach

Carlucci R, Manea E, Ricci P, Cipriano G, Fanizza C, Maglietta R, Gissi E. Managing multiple pressures for cetaceans’ conservation with an Ecosystem-Based Marine Spatial Planning approach. Journal of Environmental Management [Internet]. 2021 ;287:112240. Available from: https://www.sciencedirect.com/science/article/pii/S0301479721003029?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Despite the recognized important ecological role that cetaceans play in the marine environment, their protection is still scarcely enforced in the Mediterranean Sea even though this area is strongly threatened by local human pressures and climate change. The piecemeal of knowledge related to cetaceans' ecology and distribution in the basin undermines the capacity of addressing cetaceans' protection and identifying effective conservation strategies. In this study, an Ecosystem-Based Marine Spatial Planning (EB-MSP) approach is applied to assess human pressures on cetaceans and guide the designation of a conservation area in the Gulf of Taranto, Northern Ionian Sea (Central-eastern Mediterranean Sea). The Gulf of Taranto hosts different cetacean species that accomplish important phases of their life in the area. Despite this fact, the gulf does not fall within any area-based management tools (ABMTs) for cetacean conservation. We pin down the Gulf of Taranto being eligible for the designation of diverse ABMTs for conservation, both legally and non-legally binding. Through a risk-based approach, this study explores the cause-effect relationships that link any human activities and pressures exerted in the study area to potential effects on cetaceans, by identifying major drivers of potential impacts. These were found to be underwater noise, marine litter, ship collision, and competition and disturbance on preys. We draw some recommendations based on different sources of available knowledge produced so far in the area (i.e., empirical evidence, scientific and grey literature, and expert judgement) to boost cetaceans’ conservation. Finally, we stress the need of sectoral coordination for the management of human activities by applying an EB-MSP approach and valuing the establishment of an ABMT in the Gulf of Taranto.

Marine ecosystem indicators are sensitive to ecosystem boundaries and spatial scale

Heim KC, Thorne LH, Warren JD, Link JS, Nye JA. Marine ecosystem indicators are sensitive to ecosystem boundaries and spatial scale. Ecological Indicators [Internet]. 2021 ;125:107522. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X21001874?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Time series indicators are widely used in ecosystem-based management. A suite of indicators is typically calculated for a static region or multiple subregions and presented in an ecosystem assessment (EA). These are used to guide management decisions or determine environmental status. Yet, few studies have examined how the spatial scale of an EA influences indicator behavior. We explore this question using the Northwest Atlantic continental shelf ecosystem (USA). We systematically divided the ecosystem at six spatial scales (31 unique units), covering spatial extents from 250,000 km2 to 20,000 km2. The same 22 indicators were calculated for each unit, assessed for trends, and evaluated as 31 independent EAs. We found that the detected signals of indicator trends depended on the spatial scale at which the ecosystem was defined. A single EA for the whole region differed by 23% (in terms of the 22 indicator trend tests) relative to ones for spatially nested 120,000 km2 subunits, and by up to 36% for EAs at smaller scales. Indicator trend disagreement occurred because (most common) a localized trend was perceived as widespread, (common) a local trend was obscured by aggregating data over a large region, or (least common) a local trend switched direction when examined at a broader scale. Yet, there was variation among indicators in their scale sensitivity related to trophic level. Indicators of temperature, chlorophyll-a, and zooplankton were spatially coherent: trends portrayed were similar regardless of scale. Mid-trophic level indicators (fish and invertebrates) showed more spatial variation in trends. We also compared trend magnitude and indicator values to spatial extent and found relationships consistent with scaling theory. Indicators at broad scales produced subdued trends and values relative to indicators developed at smaller spatial scales, which often portrayed ‘hotspots’ of local abundance or strong trend. Our results imply that subsequent uses of indicators (e.g., determining environmental status, risk assessments, management decisions) are also sensitive to ecosystem delineation and scale. We suggest that indicators and EAs should be done at multiple spatial scales and complimented with spatially explicit analysis to reflect the hierarchical structure of ecosystems. One scale is not best, but rather we gain a new level of understanding at each scale examined that can contribute to management decisions in a multiscale governance framework characterized by goals and objectives with relevance at different scales.

Applying the ecosystem services - EBM framework to sustainably manage Qatar's coral reefs and seagrass beds

Fanning LM, Al-Naimi MNasser, Range P, Ali A-SM, Bouwmeester J, Al-Jamali F, Burt JA, Ben-Hamadou R. Applying the ecosystem services - EBM framework to sustainably manage Qatar's coral reefs and seagrass beds. Ocean & Coastal Management [Internet]. 2021 ;205:105566. Available from: https://www.sciencedirect.com/science/article/pii/S096456912100051X?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Given the current natural and anthropogenic threats facing Qatar's marine environment and the consequential expected decline in ecosystem services, this paper examines the potential application of the Ecosystem Services-EBM framework developed by Granek et al. (2010) to sustainably manage Qatar's coral reef and seagrass bed ecosystems. Using interviews with stakeholders and field-collected data from sixteen coral reef sites and 6 seagrass meadows as well as secondary data, the paper presents new knowledge regarding the status of these ecosystems and the benefits they provide that are most valued by stakeholders. The research identifies existing and missing ecological and socio-economic data, as well as the processes and management strategies required to implement the five-step framework within a Qatari context. Key goals for implementing EBM identified by stakeholders include: adoption of scientific planning and valuation of marine environment, contextualizing and drafting legislation, regulations and policies in support of EBM; monitoring and enforcement of laws; and, promotion of public awareness and engagement. The article concludes with recommendations for filling remaining data gaps and highlights opportunities available to Qatar to become a leader in implementing EBM. These include maximizing the increasing role that stakeholders can play in mitigating further decline of the country's coastal ecosystems and leveraging mega events planned in Qatar, such as FIFA World Cup 2022.

Applying the ecosystem services - EBM framework to sustainably manage Qatar's coral reefs and seagrass beds

Fanning LM, Al-Naimi MNasser, Range P, Ali A-SM, Bouwmeester J, Al-Jamali F, Burt JA, Ben-Hamadou R. Applying the ecosystem services - EBM framework to sustainably manage Qatar's coral reefs and seagrass beds. Ocean & Coastal Management [Internet]. 2021 ;205:105566. Available from: https://www.sciencedirect.com/science/article/pii/S096456912100051X?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Given the current natural and anthropogenic threats facing Qatar's marine environment and the consequential expected decline in ecosystem services, this paper examines the potential application of the Ecosystem Services-EBM framework developed by Granek et al. (2010) to sustainably manage Qatar's coral reef and seagrass bed ecosystems. Using interviews with stakeholders and field-collected data from sixteen coral reef sites and 6 seagrass meadows as well as secondary data, the paper presents new knowledge regarding the status of these ecosystems and the benefits they provide that are most valued by stakeholders. The research identifies existing and missing ecological and socio-economic data, as well as the processes and management strategies required to implement the five-step framework within a Qatari context. Key goals for implementing EBM identified by stakeholders include: adoption of scientific planning and valuation of marine environment, contextualizing and drafting legislation, regulations and policies in support of EBM; monitoring and enforcement of laws; and, promotion of public awareness and engagement. The article concludes with recommendations for filling remaining data gaps and highlights opportunities available to Qatar to become a leader in implementing EBM. These include maximizing the increasing role that stakeholders can play in mitigating further decline of the country's coastal ecosystems and leveraging mega events planned in Qatar, such as FIFA World Cup 2022.

Evaluating the theoretical and practical linkages between ecosystem-based fisheries management and fisheries co-management

Cucuzza M, Stoll JS, Leslie HM. Evaluating the theoretical and practical linkages between ecosystem-based fisheries management and fisheries co-management. Marine Policy [Internet]. 2021 ;126:104390. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X20310411?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ecosystem-based fisheries management (EBFM) is increasingly recognized as the future of fisheries conservation and stewardship, appearing prominently in policy documents internationally. Although considerable progress has been made to translate EBFM from theory to practice, limited attention has been given to assessing the theoretical and practical linkages between EBFM and fisheries co-management. While EBFM and fisheries co-management are not new ideas, growing interest in both compels reflection on the interplay of these concepts, even though they have traditionally been viewed as disparate approaches. We report on the results of a literature review that explored the extent to which EBFM and fisheries co-management are linked. We describe the fundamental drivers, attributes, and desired outcomes commonly used to characterize these management concepts and quantify the degree of overlap in the literature. To illustrate how EBFM and co-management are integrated in practice, we present three examples. These examples highlight that these concepts exist on a continuum, with elements of co-management regularly appearing in conventional management regimes and elements of EBFM appearing in fisheries co-management initiatives.

Estimated flows and biomass in a no-take coral reef from the eastern tropical Pacific through network analysis

Calderon-Aguilera LE, Reyes-Bonilla H, Olán-González M, Castañeda-Rivero FR, Perusquía-Ardón JC. Estimated flows and biomass in a no-take coral reef from the eastern tropical Pacific through network analysis. Ecological Indicators [Internet]. 2021 ;123:107359. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X21000248?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In the southern Gulf of California, the Cabo Pulmo reef has been the focus of many studies because it is the northern-most coral reef in the eastern Pacific. It is a paragon of a well-managed marine protected area. Under the assumption that fishing mortality is negligible, we want to identify and quantify major energy flows in an ecosystem without human intervention and describe the ecosystem resources and their interactions among species, to provide a tool for ecosystem-based management. We built a trophodynamic model using Ecopath to perform network analysis. Based on fieldwork (October 2017 – May 2018) and literature review, we identified 57 functional groups comprising 51 consumers (including 15 top predators), five primary producers plus detritus, and cluster analysis of trait profiles. The connectance index (0.17) and the system omnivory index (0.22) are low, suggesting that consumers feed on a few discrete trophic levels. Biomass of primary producers (grazing food chain; 186.8 t km−2) provides 9,813 t km−2 y−1, whereas flow from detritus supply 344.9 t km−2 y−1. The transfer efficiency decreases as flows go up the food web, from 12% at TL II to 4% at TL X, and throughput cycled (including detritus) = 118.7 t km−2 y−1. In comparison with other coral reefs, we found that Cabo Pulmo complies with the attributes to resist disturbances, with an estimated total system throughput = 95,789 t km−2 y−1, a net system production = 38,535 t km−2 y−1, a large mean path length = 12.11, ascendency = 123,662 (52%) flowbits and overhead = 116,164 (48%) flowbits. The high quality of the ecosystem services provided by Cabo Pulmo and the scenic beauty appeals to developers. Although the system is resilient, unregulated human activities may impact the reef condition and decrease the residents' quality of life and that of all the people who make a living from the low impact activities currently in effect. The trophic web model presented here may help to improve the response capacity of the coalition of residents, authorities, diving companies, and NGO's to preserve the reef and be a key element to conserve the system by contributing to its best management.

From ‘clean and green’ to ‘brown and down’: A synthesis of historical changes to biodiversity and marine ecosystems in the Marlborough Sounds, New Zealand

Urlich SC, Handley SJ. From ‘clean and green’ to ‘brown and down’: A synthesis of historical changes to biodiversity and marine ecosystems in the Marlborough Sounds, New Zealand. Ocean & Coastal Management [Internet]. 2020 ;198:105349. Available from: https://www.sciencedirect.com/science/article/pii/S0964569120302593?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ecosystem-based management (EBM) is a potential antidote to the alleviation of multiple stressors in highly-valued and contested marine environments. An understanding of the magnitude and drivers of past ecosystem changes can inform the development of realistic ecological and social outcomes for different places. These goals should aim to increase the ecological health and resilience of coastal ecosystems and their connected land- and sea-scapes by minimising anthropogenic disturbances. To address knowledge gaps, we present a marine historical synthesis of the Marlborough Sounds in New Zealand's South Island. These rias are strongly coupled to the surrounding land and inland river catchments. We took an integrated approach by examining effects of land use change on coastal ecosystems, along with case studies of the effects of exploitation on foundational marine species. We found that ecosystems have gone through a series of transformations since Māori settlement ca. 700 years ago, with localised extirpations of marine megafauna, overharvesting of exploited species, and disruption to ecological functioning through ongoing clearfelling of terrestrial and marine biogenic communities since European settlement in the 1800s. There has been a decline from great abundance of marine life to relative scarcity, which is currently evident to local people in increased effort and reduced allowable catches of fish and shellfish. Recovery of biodiversity in the short-term within the Marlborough Sounds is uncertain, given ongoing multiple and interacting stressors from unsustainable land-use and over-exploitation of marine life. Lifting baselines are possible but will require significant changes to land and marine management to restore ecological health and enhance resilience in the face of climate change. Increased marine protection, regeneration of biodiverse biogenic habitats, spatial fishing measures to increase predators of sea urchins, stricter regulation of plantation forestry and a replanting prohibition in critical erosion source areas, are all needed within an EBM framework. Large experimental areas are proposed to develop, test and integrate different management techniques, and to facilitate community understanding, participation, and support for the transition to EBM.

Comparing feedback and spatial approaches to advance ecosystem-based fisheries management in a changing Antarctic

Klein ES, Watters GM. Comparing feedback and spatial approaches to advance ecosystem-based fisheries management in a changing Antarctic Ropert-Coudert Y. PLOS ONE [Internet]. 2020 ;15(9):e0231954. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231954
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

To implement ecosystem-based approaches to fisheries management, decision makers need insight on the potential costs and benefits of the policy options available to them. In the Southern Ocean, two such options for addressing trade-offs between krill-dependent predators and the krill fishery include “feedback management” (FBM) strategies and marine protected areas (MPAs); in theory, the first adjusts to change, while the latter is robust to change. We compared two possible FBM options to a proposed MPA in the Antarctic Peninsula and Scotia Sea given a changing climate. One of our feedback options, based on the density of Antarctic krill (Euphasia superba), projected modest increases in the abundances of some populations of krill predators, whereas outcomes from our second FBM option, based on changes in the abundances of penguins, were more mixed, with some areas projecting predator population declines. The MPA resulted in greater increases in some, but not all, predator populations than either feedback strategy. We conclude that these differing outcomes relate to the ways the options separate fishing and predator foraging, either by continually shifting the spatial distribution of fishing away from potentially vulnerable populations (FBM) or by permanently closing areas to fishing (the MPA). For the krill fishery, we show that total catches could be maintained using an FBM approach or slightly increased with the MPA, but the fishery would be forced to adjust fishing locations and sometimes fish in areas of relatively low krill density–both potentially significant costs. Our work demonstrates the potential to shift, rather than avoid, ecological risks and the likely costs of fishing, indicating trade-offs for decision makers to consider.

Marine Heatwave Stress Test of Ecosystem-Based Fisheries Management in the Gulf of Alaska Pacific Cod Fishery

Barbeaux SJ, Holsman K, Zador S. Marine Heatwave Stress Test of Ecosystem-Based Fisheries Management in the Gulf of Alaska Pacific Cod Fishery. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00703/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1418755_45_Marine_20200903_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In 2014–2016 an unprecedented warming event in the North Pacific Ocean triggered changes in ecosystem of the Gulf of Alaska (GOA) impacting fisheries management. The marine heatwave was noteworthy in its geographical extent, depth range, and persistence, with evidence of shifts in species distribution and reduced productivity. In 2017 a groundfish survey indicated that GOA Pacific cod (Gadus macrocephalus) had experienced a 71% decline in abundance from the previous 2015 survey. The GOA Pacific cod fishery supports a $103 million fishery which is 29% of the groundfish harvest value in the GOA. In this paper, we demonstrate that an increase in metabolic demand during this extended marine heatwave as well as a reduced prey supply can explain the decline in GOA Pacific cod biomass. Although increased mortality likely led to the decline in the Pacific cod population, historically low recruitment concurrent with the heatwave portends a slow recovery for the stock and gives a preview of impacts facing this region due to climate change. We evaluate the intersection of climate change with ecosystem-based fisheries management in the context of GOA Pacific cod with a description of the sensitivities of the ecosystem, how the changes in the ecosystem affected the Pacific cod stock, and a description of how the management system in the North Pacific handled this shock. We also provide suggestions on how fisheries management systems could be improved to better contend with the impacts of climate change such as the effects of heatwaves like that experienced in 2014–2016.

 

Pages

Subscribe to RSS - Ecosystem-based Management (EBM)