Food for Thought

A New Network for the Advancement of Marine Biotechnology in Europe and Beyond

Rotter A, Bacu A, Barbier M, Bertoni F, Bones AM, M. Cancela L, Carlsson J, Carvalho MF, Cegłowska M, Dalay MConk, et al. A New Network for the Advancement of Marine Biotechnology in Europe and Beyond. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00278/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1334659_45_Marine_20200521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anti-coagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond.

Cryobanking of Fish and Shellfish Egg, Embryos and Larvae: An Overview

Diwan AD, Harke SN, Gopalkrishna , Panche AN. Cryobanking of Fish and Shellfish Egg, Embryos and Larvae: An Overview. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00251/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1334659_45_Marine_20200521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Number of attempts have been made to cryopreserve fish and shellfish gametes. Success has been achieved to establish only sperm banks in case of some commercially important fish. In shellfish, also particularly in shrimps, though the sperm cryopreservation was successful, no attempts were made to develop sperm banks. As far as cryopreservation of egg and embryos of fish and shellfish is concerned, less research efforts were made with limited success. Number of reasons have been given for the failure of egg/embryo cryopreservation and the main barriers speculated are low membrane permeability in the eggs, the large yolk mass of the oocyte, and the presence of compartments in early developing embryos. These factors result in ice crystal formation during the freezing process. In addition, the oocytes and embryos are prone to chilling injuries unrelated to ice crystal damage. There are number of other problems reported by several researchers in the egg/embryo cryobanking protocols which are elaborately discussed in the present paper. There is an urgent need to develop a viable cryobanking technology for fish egg/embryos to enhance fish production in captive condition. Attempts to cryopreserve larvae of aquatic animals is another challenge occurring in the recent past. The aim of the present review is to collect comprehensive information on the efforts so far made on fish and shellfish egg and embryo cryobanking; and to assess the challenges in the development of viable technology and plan for future research for making this technology viable and cost effective.

Enhancing the Scientific Value of Industry Remotely Operated Vehicles (ROVs) in Our Oceans

McLean DL, Parsons MJG, Gates AR, Benfield MC, Bond T, Booth DJ, Bunce M, Fowler AM, Harvey ES, Macreadie PI, et al. Enhancing the Scientific Value of Industry Remotely Operated Vehicles (ROVs) in Our Oceans. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00220/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1320398_45_Marine_20200505_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Remotely operated vehicles (ROVs) are used extensively by the offshore oil and gas and renewables industries for inspection, maintenance, and repair of their infrastructure. With thousands of subsea structures monitored across the world’s oceans from the shallows to depths greater than 1,000 m, there is a great and underutilized opportunity for their scientific use. Through slight modifications of ROV operations, and by augmenting industry workclass ROVs with a range of scientific equipment, industry can fuel scientific discoveries, contribute to an understanding of the impact of artificial structures in our oceans, and collect biotic and abiotic data to support our understanding of how oceans and marine life are changing. Here, we identify and describe operationally feasible methods to adjust the way in which industry ROVs are operated to enhance the scientific value of data that they collect, without significantly impacting scheduling or adding to deployment costs. These include: rapid marine life survey protocols, imaging improvements, the addition of a range of scientific sensors, and collection of biological samples. By partnering with qualified and experienced research scientists, industry can improve the quality of their ROV-derived data, allowing the data to be analyzed robustly. Small changes by industry now could provide substantial benefits to scientific research in the long-term and improve the quality of scientific data in existence once the structures require decommissioning. Such changes also have the potential to enhance industry’s environmental stewardship by improving their environmental management and facilitating more informed engagement with a range of external stakeholders, including regulators and the public.

Marine social sciences: Looking towards a sustainable future

McKinley E, Acott T, Yates KL. Marine social sciences: Looking towards a sustainable future. Environmental Science & Policy [Internet]. 2020 ;108:85 - 92. Available from: https://www.sciencedirect.com/science/article/pii/S1462901119312961
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine and coastal environments provide extensive and essential ecosystem services upon which much of humanity relies, yet the incorporation of human dimensions into marine and coastal policy and management has historically been lacking. As efforts to address the substantial and diverse challenges facing marine and coastal environments continue, recent years have seen a growing call for greater consideration of people, how they interact with the marine environment, and the resultant implications for developing effective policy and management. Indeed, in recent times recognition of the importance of marine social science research, data, evidence and expertise has undergone an upward trajectory. Despite this growing level of awareness of the value of social science to the wider marine and coastal management agenda, effective and meaningful inclusion of marine social science into research and practice has remained a challenge. Here we approach this global challenge as an opportunity to bring the community together to set a forward-looking international research agenda, recognising the role of multiple approaches and diverse methods understanding the relationship between society and the sea, galvanising the research and practice community across marine social sciences and beyond. Furthermore, by bringing together this increasingly active community, we can identify mechanisms of change and pathways to enable inclusion of marine social sciences within global ocean policy. This paper draws on the views of researchers and practitioners from across the marine social science disciplines, brought together through an expert workshop held at the MARE 2019 conference (June 2019) and representing a range of geographical regions and perspectives. Through the workshop, delegates identified a number of priorities for the ongoing development of the marine social science community, including the need to improve capacity for marine social science research globally, the importance of nurturing an inclusive and equitable marine social science research community and the role of networks to continue to raise the profile of marine social science data and evidence for global ocean policy and management. Additionally, the discussions provided valuable insight into existing knowledge gaps and potential research priorities for the future. Finally, the paper presents a future vision and recommendations for an international and interdisciplinary marine social science agenda, calling for collaborative and strategic thinking on marine social sciences from across the marine science and policy interface. Critically, we show how social science needs to be embedded in all aspects of marine and coastal management in order to create truly sustainable solutions to the pervasive environmental challenges we face.

Virtual reality as a tool for environmental conservation and fundraising

Nelson KM, Anggraini E, Schlüter A. Virtual reality as a tool for environmental conservation and fundraising Triberti S. PLOS ONE [Internet]. 2020 ;15(4):e0223631. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0223631
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Anecdotal evidence from philanthropic fundraisers shows that virtual reality (VR) technology increases empathy and can influence people toward pro-environmental behavior. Non-profit organizations are increasingly marketing their causes using virtual reality and they report increased donations when VR technology is employed. In VR, users are immersed in situations intended to feel more like the real world through technology, such as 360° video viewed through 3D headsets that block out visual and auditory distractions. The framing of the message as either positive or negative has long shown to have an effect on behavior, although consensus on the impact of framing has not been reached in relation to encouraging contributions to public goods. This paper focuses on field experiments used to investigate the effects of varying degrees of visual immersion and positive versus negative message framing on respondents’ contributions to a conservation charity. Participants were exposed to a five-minute underwater film about coral reefs and the importance of protecting them. We employed a 2x2 experimental design using 3D head-mounted displays comparing 360° film footage vs. unidirectional film and a positive message vs. a negative message. After watching the film, each participant completed a short questionnaire and had the opportunity to donate to a marine conservation charity. In addition, we tested a control treatment where no video was observed. The video was filmed in Indonesia which is host to some of the world’s most biodiverse reefs that are under great threat from human activity. We also conducted the study in Indonesia, sampling a total of 1006 participants from the Bogor city area and tourists on the island of Gili Trawangan—which is popular for scuba diving and snorkeling. We find significant differences in observed behavior and reported emotions between all treatments compared to the control condition. Among the tourist sample, we find significant differences between the 360° film with a negative message which garnered significantly larger average donation amounts compared to the unidirectional film with both positive and negative framing. Overall, we can infer from these studies that virtual reality is an effective way to raise awareness of environmental threats and encourage behavioral action, especially when tailored to target groups. New technology, such as the VR head-mounted display, is highly effective at attracting interest which is an important point to encourage organizations to invest in new technologies.

Same law, diverging practice: Comparative analysis of Endangered Species Act consultations by two federal agencies

Evansen M, Li Y-W, Malcom J. Same law, diverging practice: Comparative analysis of Endangered Species Act consultations by two federal agencies Seara T. PLOS ONE [Internet]. 2020 ;15(3):e0230477. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230477
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Evaluating how wildlife conservation laws are implemented is critical for safeguarding biodiversity. Two agencies, the U.S. Fish and Wildlife Service and National Marine Fisheries Service (FWS and NMFS; Services collectively), are responsible for implementing the U.S. Endangered Species Act (ESA), which requires federal protection for threatened and endangered species. FWS and NMFS’ comparable role for terrestrial and marine taxa, respectively, provides the opportunity to examine how implementation of the same law varies between agencies. We analyzed how the Services implement a core component of the ESA, section 7 consultations, by objectively assessing the contents of >120 consultations on sea turtle species against the requirements in the Services’ consultation handbook, supplemented with in-person observations from Service biologists. Our results showed that NMFS consultations were 1.40 times as likely to have higher completeness scores than FWS consultations given the standard in the handbook. Consultations tiered from an FWS programmatic consultation inherited higher quality scores of generally more thorough programmatic consultations, indicating that programmatic consultations could increase the quality of consultations while improving efficiency. Both agencies commonly neglected to account for the effects of previous consultations and the potential for compounded effects on species. From these results, we recommend actions that can improve quality of consultation, including the use of a single database to track and integrate previously authorized harm in new analyses and the careful but more widespread use of programmatic consultations. Our study reveals several critical shortfalls in the current process of conducting ESA section 7 consultations that the Services could address to better safeguard North America’s most imperiled species.

Science, Diplomacy, and the Red Sea’s Unique Coral Reef: It’s Time for Action

Kleinhaus K, Al-Sawalmih A, Barshis DJ, Genin A, Grace LN, Hoegh-Guldberg O, Loya Y, Meibom A, Osman EO, Ruch J-D, et al. Science, Diplomacy, and the Red Sea’s Unique Coral Reef: It’s Time for Action. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00090/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1268806_45_Marine_20200312_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Rapid ocean warming due to climate change poses a serious risk to the survival of coral reefs. It is estimated that 70–90 percent of all reefs will be severely degraded by mid-century even if the 1.5°C goal of the Paris Climate Agreement is achieved. However, one coral reef ecosystem seems to be more resilient to rising sea temperatures than most others. The Red Sea’s reef ecosystem is one of the longest continuous living reefs in the world, and its northernmost portion extends into the Gulf of Aqaba. The scleractinian corals in the Gulf have an unusually high tolerance for the rapidly warming seawater in the region. They withstand water temperature anomalies that cause severe bleaching or mortality in most hard corals elsewhere. This uniquely resilient reef employs biological mechanisms which are likely to be important for coral survival as the planet’s oceans warm. The Gulf of Aqaba could potentially be one of the planet’s largest marine refuges from climate change. However, this unique portion of the Red Sea’s reef will only survive and flourish if serious regional environmental challenges are addressed. Localized anthropogenic stressors compound the effects of warming seawater to damage corals and should be mitigated immediately. Reefs in the rest of the Red Sea are already experiencing temperatures above their thermal tolerance and have had significant bleaching, though they too would benefit from fewer local anthropogenic stressors. The countries bordering the entire Red Sea will need to cooperate to enable effective scientific research and conservation. The newly established Transnational Red Sea Center, based at the Ecole Polytechnique Fédérale de Lausanne (EPFL), can serve as the regionally inclusive, neutral organization to foster crucial regional scientific collaboration.

Transforming Ocean Conservation: Applying the Genetic Rescue Toolkit

Novak BJ, Fraser D, Maloney TH. Transforming Ocean Conservation: Applying the Genetic Rescue Toolkit. Genes [Internet]. 2020 ;11(2):209. Available from: https://www.mdpi.com/2073-4425/11/2/209
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Although oceans provide critical ecosystem services and support the most abundant populations on earth, the extent of damage impacting oceans and the diversity of strategies to protect them is disconcertingly, and disproportionately, understudied. While conventional modes of conservation have made strides in mitigating impacts of human activities on ocean ecosystems, those strategies alone cannot completely stem the tide of mounting threats. Biotechnology and genomic research should be harnessed and developed within conservation frameworks to foster the persistence of viable ocean ecosystems. This document distills the results of a targeted survey, the Ocean Genomics Horizon Scan, which assessed opportunities to bring novel genetic rescue tools to marine conservation. From this Horizon Scan, we have identified how novel approaches from synthetic biology and genomics can alleviate major marine threats. While ethical frameworks for biotechnological interventions are necessary for effective and responsible practice, here we primarily assessed technological and social factors directly affecting technical development and deployment of biotechnology interventions for marine conservation. Genetic insight can greatly enhance established conservation methods, but the severity of many threats may demand genomic intervention. While intervention is controversial, for many marine areas the cost of inaction is too high to allow controversy to be a barrier to conserving viable ecosystems. Here, we offer a set of recommendations for engagement and program development to deploy genetic rescue safely and responsibly.

Moving Toward an Agenda on Ocean Health and Human Health in Europe

Borja A, White MP, Berdalet E, Bock N, Eatock C, Kristensen P, Leonard A, Lloret J, Pahl S, Parga M, et al. Moving Toward an Agenda on Ocean Health and Human Health in Europe. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00037/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The integrated study of ocean health and human health is an emerging area of increasing global importance. Growing evidences demonstrate that the health of the ocean and the health of humans have always been and will continue to be, inextricably linked. Our actions toward the oceans will significantly influence the future of the whole planet and, in turn, our own health. The current review of these issues arose from a summer school in San Sebastian (Spain), from 5th to 7th June, 2019. An interdisciplinary group of researchers discussed key risks (e.g., microbial pollution, pharmaceuticals, harmful algal blooms, plastic pollution) and benefits (e.g., bathing waters, recreation, tourism) of the seas and global ocean for humanity; and debated the future priorities and potential actions for a joint Oceans and Human Health research and governance programme in Europe. The aim of this review is to contribute to the emerging scientific agenda on ocean health and human health, as well as coordinate efforts with stakeholders, policy makers and the general public. This agenda operates within the larger context of the upcoming United Nations Decade of Ocean Science for Sustainable Development: 2021–2030, which strives to achieve the Sustainable Development Goals (SDG), including healthy (human) lives and well-being (SDG3) and conserving and sustainably using the oceans (SDG14), among others. In addition to summarizing some of the key risks and benefits, therefore, we describe the governance of oceans and health interactions (especially in Europe), and we finish by proposing a list of elements for potential future research priorities on oceans and human health.

UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?

Waltham NJ, Elliott M, Lee SYip, Lovelock C, Duarte CM, Buelow C, Simenstad C, Nagelkerken I, Claassens L, Wen CK-C, et al. UN Decade on Ecosystem Restoration 2021–2030—What Chance for Success in Restoring Coastal Ecosystems?. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/article/10.3389/fmars.2020.00071/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

On 1 March 2019, the United Nations (UN) General Assembly (New York) declared 2021–2030 the “UN Decade on Ecosystem Restoration.” This call to action has the purpose of recognizing the need to massively accelerate global restoration of degraded ecosystems, to fight the climate heating crisis, enhance food security, provide clean water and protect biodiversity on the planet. The scale of restoration will be key; for example, the Bonn Challenge has the goal to restore 350 million km2 (almost the size of India) of degraded terrestrial ecosystems by 2030. However, international support for restoration of “blue” coastal ecosystems, which provide an impressive array of benefits to people, has lagged. Only the Global Mangrove Alliance (https://mangrovealliance.org/) comes close to the Bonn Challenge, with the aim of increasing the global area of mangroves by 20% by 2030. However, mangrove scientists have reservations about this target, voicing concerns that it is unrealistic and may prompt inappropriate practices in attempting to reach this target (Lee et al., 2019). The decade of ecosystem restoration declaration also coincides with the UN Decade of Ocean Science for Sustainable Development, which aims to reverse deterioration in ocean health. If executed in a holistic and coordinated manner, signatory nations could stand to deliver on both these UN calls to action.

Pages

Subscribe to RSS - Food for Thought