Food for Thought

Operationalizing Ocean Health: Toward Integrated Research on Ocean Health and Recovery to Achieve Ocean Sustainability

Franke A, Blenckner T, Duarte CM, Ott K, Fleming LE, Antia A, Reusch TBH, Bertram C, Hein J, Kronfeld-Goharani U, et al. Operationalizing Ocean Health: Toward Integrated Research on Ocean Health and Recovery to Achieve Ocean Sustainability. One Earth [Internet]. 2020 ;2(6):557 - 565. Available from: https://www.sciencedirect.com/science/article/pii/S2590332220302499
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Protecting the ocean has become a major goal of international policy as human activities increasingly endanger the integrity of the ocean ecosystem, often summarized as “ocean health.” By and large, efforts to protect the ocean have failed because, among other things, (1) the underlying socio-ecological pathways have not been properly considered, and (2) the concept of ocean health has been ill defined. Collectively, this prevents an adequate societal response as to how ocean ecosystems and their vital functions for human societies can be protected and restored. We review the confusion surrounding the term “ocean health” and suggest an operational ocean-health framework in line with the concept of strong sustainability. Given the accelerating degeneration of marine ecosystems, the restoration of regional ocean health will be of increasing importance. Our advocated transdisciplinary and multi-actor framework can help to advance the implementation of more active measures to restore ocean health and safeguard human health and well-being.

Advancing Through the Pandemic From the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities

Pardo JCF, Ramon D, Stefanelli-Silva G, Elegbede I, Lima LS, Principe SC. Advancing Through the Pandemic From the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00528/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ongoing COVID-19 pandemic has brought about a new social and academic reality to researchers worldwide. The field of marine science, our own topic of interest, has also been impacted in multiple ways, from cancelation of laboratory and field activities to postponement of onboard research. As graduate researchers, we have a time-sensitive academic path, and our current situation may constrain our academic future. At the same time, the pandemic demands revised strategies to deal with the ongoing difficulties and tackle similar future situations. In this perspective, we have gathered information on the challenges, solutions and opportunities for graduate researchers in the field of marine science by (1) discussing the relevant short-, long-term challenges caused by the pandemic, (2) providing feasible immediate and near-future solutions, (3) compiling opportunities (courses, scientific events, academic positions), and (4) creating a shared social media account to make the available information on new opportunities more accessible. With this, we hope to add to the efforts to advance the academic career of marine graduates during this harsh period.

Novel Insights Into Gas Embolism in Sea Turtles: First Description in Three New Species

Crespo-Picazo JL, Parga M, de Quirós YBernaldo, Monteiro D, Marco-Cabedo V, Llopis-Belenguer C, García-Párraga D. Novel Insights Into Gas Embolism in Sea Turtles: First Description in Three New Species. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00442/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The recent finding of gas embolism (GE) and decompression sickness (DCS) in loggerhead sea turtles (Caretta caretta) in the Mediterranean Sea challenged the conventional understanding of marine vertebrate diving physiology. Additionally, it brought to light a previously unknown source of mortality associated with fisheries bycatch for this vulnerable species. In this paper, we use ultrasonography to describe GE in a leatherback sea turtle (Dermochelys coriacea), a green sea turtle (Chelonia mydas), and an olive ridley sea turtle (Lepidochelys olivacea) from accidental capture in a gillnet, bottom trawl, and pair-bottom trawl, respectively. This is the first description of this condition in these three species worldwide. These cases of GE suggest that this may be a threat faced by all sea turtle species globally.

Advancing Through the Pandemic From the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities

Pardo JCF, Ramon D, Stefanelli-Silva G, Elegbede I, Lima LS, Principe SC. Advancing Through the Pandemic From the Perspective of Marine Graduate Researchers: Challenges, Solutions, and Opportunities. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00528/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ongoing COVID-19 pandemic has brought about a new social and academic reality to researchers worldwide. The field of marine science, our own topic of interest, has also been impacted in multiple ways, from cancelation of laboratory and field activities to postponement of onboard research. As graduate researchers, we have a time-sensitive academic path, and our current situation may constrain our academic future. At the same time, the pandemic demands revised strategies to deal with the ongoing difficulties and tackle similar future situations. In this perspective, we have gathered information on the challenges, solutions and opportunities for graduate researchers in the field of marine science by (1) discussing the relevant short-, long-term challenges caused by the pandemic, (2) providing feasible immediate and near-future solutions, (3) compiling opportunities (courses, scientific events, academic positions), and (4) creating a shared social media account to make the available information on new opportunities more accessible. With this, we hope to add to the efforts to advance the academic career of marine graduates during this harsh period.

Dead Cetacean? Beach, Bloat, Float, Sink

Moore MJ, Mitchell GH, Rowles TK, Early G. Dead Cetacean? Beach, Bloat, Float, Sink. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00333/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Variably buoyant, dead Cetacea may float, or sink and later bloat to refloat if ambient temperature and pressure allow sufficient decomposition gas formation and expansion. Mortality can result from acute or chronic disease, fishery entanglement, vessel collision, noxious noises, or toxicant spills. Investigators often face the daunting task of elucidating a complex series of events, in reverse order, from when and where an animal is found, and to diagnose the cause of death. Various scenarios are possible: an animal could die at sea remaining there or floating ashore, or strand on a beach alive, where it dies and, if cast high enough, remain beached to be scavenged or decompose. An animal that rests low on a beach may refloat again, through increased buoyancy from decomposition gas and favorable tides, currents, and wind. Here we review the factors responsible for the different outcomes, and how to recognize the provenance of a cetacean mortality found beached, or floating at sea. In conclusion, only some carcasses strand, or remain floating. Negatively buoyant animals that die at depth, or on the surface, and sink, may never surface, even after decomposition gas accumulation, as in cold, deep waters gas may fail to adequately reduce the density of a carcass, precluding it from returning to the surface.

Past and Future Grand Challenges in Marine Ecosystem Ecology

Borja A, Andersen JH, Arvanitidis CD, Basset A, Buhl-Mortensen L, Carvalho S, Dafforn KA, Devlin MJ, Escobar-Briones EG, Grenz C, et al. Past and Future Grand Challenges in Marine Ecosystem Ecology. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00362/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Initial Grand Challenges

Frontiers in Marine Science launched the Marine Ecosystems Ecology (FMARS-MEE) section in 2014, with a paper that identified eight grand challenges for the discipline (Borja, 2014). Since then, this section has published a total of 370 papers, including 336 addressing aspects of those challenges. As editors of the journal, with a wide range of marine ecology expertise, we felt it was timely to evaluate research advances related to those challenges; and to update the scope of the section to reflect the grand challenges we envision for the next 10 years. This output will match with the United Nations (UN) Decade on Oceans Science for Sustainable Development (DOSSD; Claudet et al., 2020), UN Decade of Ecosystems Restoration (DER; Young and Schwartz, 2019), and the UN Sustainable Development Goals (SDGs; Visbeck et al., 2014).

First, we analyzed each published paper and assigned their topic to a maximum of two out of the eight challenges (all information available in Supplementary Table 1). We then extracted the 3–5 most cited papers within each challenge using two criteria: the total number of citations during this 6-year period, and the annual citation rate (i.e., the mean annual number of citations since publication). We then collated the topics covered by this reduced list of papers (Table 1) and summarized the outcomes for each topic. 

A New Network for the Advancement of Marine Biotechnology in Europe and Beyond

Rotter A, Bacu A, Barbier M, Bertoni F, Bones AM, M. Cancela L, Carlsson J, Carvalho MF, Cegłowska M, Dalay MConk, et al. A New Network for the Advancement of Marine Biotechnology in Europe and Beyond. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00278/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1334659_45_Marine_20200521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine organisms produce a vast diversity of metabolites with biological activities useful for humans, e.g., cytotoxic, antioxidant, anti-microbial, insecticidal, herbicidal, anticancer, pro-osteogenic and pro-regenerative, analgesic, anti-inflammatory, anti-coagulant, cholesterol-lowering, nutritional, photoprotective, horticultural or other beneficial properties. These metabolites could help satisfy the increasing demand for alternative sources of nutraceuticals, pharmaceuticals, cosmeceuticals, food, feed, and novel bio-based products. In addition, marine biomass itself can serve as the source material for the production of various bulk commodities (e.g., biofuels, bioplastics, biomaterials). The sustainable exploitation of marine bio-resources and the development of biomolecules and polymers are also known as the growing field of marine biotechnology. Up to now, over 35,000 natural products have been characterized from marine organisms, but many more are yet to be uncovered, as the vast diversity of biota in the marine systems remains largely unexplored. Since marine biotechnology is still in its infancy, there is a need to create effective, operational, inclusive, sustainable, transnational and transdisciplinary networks with a serious and ambitious commitment for knowledge transfer, training provision, dissemination of best practices and identification of the emerging technological trends through science communication activities. A collaborative (net)work is today compelling to provide innovative solutions and products that can be commercialized to contribute to the circular bioeconomy. This perspective article highlights the importance of establishing such collaborative frameworks using the example of Ocean4Biotech, an Action within the European Cooperation in Science and Technology (COST) that connects all and any stakeholders with an interest in marine biotechnology in Europe and beyond.

Cryobanking of Fish and Shellfish Egg, Embryos and Larvae: An Overview

Diwan AD, Harke SN, Gopalkrishna , Panche AN. Cryobanking of Fish and Shellfish Egg, Embryos and Larvae: An Overview. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00251/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1334659_45_Marine_20200521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Number of attempts have been made to cryopreserve fish and shellfish gametes. Success has been achieved to establish only sperm banks in case of some commercially important fish. In shellfish, also particularly in shrimps, though the sperm cryopreservation was successful, no attempts were made to develop sperm banks. As far as cryopreservation of egg and embryos of fish and shellfish is concerned, less research efforts were made with limited success. Number of reasons have been given for the failure of egg/embryo cryopreservation and the main barriers speculated are low membrane permeability in the eggs, the large yolk mass of the oocyte, and the presence of compartments in early developing embryos. These factors result in ice crystal formation during the freezing process. In addition, the oocytes and embryos are prone to chilling injuries unrelated to ice crystal damage. There are number of other problems reported by several researchers in the egg/embryo cryobanking protocols which are elaborately discussed in the present paper. There is an urgent need to develop a viable cryobanking technology for fish egg/embryos to enhance fish production in captive condition. Attempts to cryopreserve larvae of aquatic animals is another challenge occurring in the recent past. The aim of the present review is to collect comprehensive information on the efforts so far made on fish and shellfish egg and embryo cryobanking; and to assess the challenges in the development of viable technology and plan for future research for making this technology viable and cost effective.

Enhancing the Scientific Value of Industry Remotely Operated Vehicles (ROVs) in Our Oceans

McLean DL, Parsons MJG, Gates AR, Benfield MC, Bond T, Booth DJ, Bunce M, Fowler AM, Harvey ES, Macreadie PI, et al. Enhancing the Scientific Value of Industry Remotely Operated Vehicles (ROVs) in Our Oceans. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00220/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1320398_45_Marine_20200505_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Remotely operated vehicles (ROVs) are used extensively by the offshore oil and gas and renewables industries for inspection, maintenance, and repair of their infrastructure. With thousands of subsea structures monitored across the world’s oceans from the shallows to depths greater than 1,000 m, there is a great and underutilized opportunity for their scientific use. Through slight modifications of ROV operations, and by augmenting industry workclass ROVs with a range of scientific equipment, industry can fuel scientific discoveries, contribute to an understanding of the impact of artificial structures in our oceans, and collect biotic and abiotic data to support our understanding of how oceans and marine life are changing. Here, we identify and describe operationally feasible methods to adjust the way in which industry ROVs are operated to enhance the scientific value of data that they collect, without significantly impacting scheduling or adding to deployment costs. These include: rapid marine life survey protocols, imaging improvements, the addition of a range of scientific sensors, and collection of biological samples. By partnering with qualified and experienced research scientists, industry can improve the quality of their ROV-derived data, allowing the data to be analyzed robustly. Small changes by industry now could provide substantial benefits to scientific research in the long-term and improve the quality of scientific data in existence once the structures require decommissioning. Such changes also have the potential to enhance industry’s environmental stewardship by improving their environmental management and facilitating more informed engagement with a range of external stakeholders, including regulators and the public.

Marine social sciences: Looking towards a sustainable future

McKinley E, Acott T, Yates KL. Marine social sciences: Looking towards a sustainable future. Environmental Science & Policy [Internet]. 2020 ;108:85 - 92. Available from: https://www.sciencedirect.com/science/article/pii/S1462901119312961
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine and coastal environments provide extensive and essential ecosystem services upon which much of humanity relies, yet the incorporation of human dimensions into marine and coastal policy and management has historically been lacking. As efforts to address the substantial and diverse challenges facing marine and coastal environments continue, recent years have seen a growing call for greater consideration of people, how they interact with the marine environment, and the resultant implications for developing effective policy and management. Indeed, in recent times recognition of the importance of marine social science research, data, evidence and expertise has undergone an upward trajectory. Despite this growing level of awareness of the value of social science to the wider marine and coastal management agenda, effective and meaningful inclusion of marine social science into research and practice has remained a challenge. Here we approach this global challenge as an opportunity to bring the community together to set a forward-looking international research agenda, recognising the role of multiple approaches and diverse methods understanding the relationship between society and the sea, galvanising the research and practice community across marine social sciences and beyond. Furthermore, by bringing together this increasingly active community, we can identify mechanisms of change and pathways to enable inclusion of marine social sciences within global ocean policy. This paper draws on the views of researchers and practitioners from across the marine social science disciplines, brought together through an expert workshop held at the MARE 2019 conference (June 2019) and representing a range of geographical regions and perspectives. Through the workshop, delegates identified a number of priorities for the ongoing development of the marine social science community, including the need to improve capacity for marine social science research globally, the importance of nurturing an inclusive and equitable marine social science research community and the role of networks to continue to raise the profile of marine social science data and evidence for global ocean policy and management. Additionally, the discussions provided valuable insight into existing knowledge gaps and potential research priorities for the future. Finally, the paper presents a future vision and recommendations for an international and interdisciplinary marine social science agenda, calling for collaborative and strategic thinking on marine social sciences from across the marine science and policy interface. Critically, we show how social science needs to be embedded in all aspects of marine and coastal management in order to create truly sustainable solutions to the pervasive environmental challenges we face.

Pages

Subscribe to RSS - Food for Thought