Food for Thought

How we can all stop killing whales: a proposal to avoid whale entanglement in fishing gear

Moore MJ. How we can all stop killing whales: a proposal to avoid whale entanglement in fishing gear. ICES Journal of Marine Science [Internet]. 2019 . Available from: https://academic.oup.com/icesjms/article/76/4/781/5288134
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

 

Whales are federally protected by the Marine Mammal Protection Act; endangered species, such as the North Atlantic right whale, receive additional protection under the Endangered Species Act. However, their regulations have failed to satisfy conservation and animal welfare concerns. From 1990 to 2011 the North Atlantic right whale (Eubalaena glacialis, NARW) population grew at a mean of 2.8% annually. However, population trends reversed since 2011; the species is in decline, with only ∼100 reproductively active females remaining. This failure is driven by vessel collisions and increasingly fatal and serious entanglement in fixed fishing gear, whose rope strength has increased substantially. Chronic entanglement, drag, and associated morbidity have been linked to poor fecundity. Genuine solutions involve designating areas to be avoided and speed restrictions for ships and removing fishing trap ropes from the water column. A trap fishing closure for NARW habitat in the Cape Cod Bay (U.S.) area has been in place seasonally since 2015. 2017 mortalities in Eastern Canada elicited substantive management changes whereby the 2018 presence of NARW in active trap fishing areas resulted in an effective closure. To avoid these costly closures, the traditional trap fishery model of rope end lines attached to surface marker buoys has to be modified so that traps are marked virtually, and retrieved with gear that does not remain in the water column except during trap retrieval. Consumer demand for genuinely whale-safe products will augment and encourage the necessary regulatory changes so that trap fisheries conserve target and nontarget species.

The marine fish food web is globally connected

Albouy C, Archambault P, Appeltans W, Araújo MB, Beauchesne D, Cazelles K, Cirtwill AR, Fortin M-J, Galiana N, Leroux SJ, et al. The marine fish food web is globally connected. Nature Ecology & Evolution [Internet]. 2019 ;3(8):1153 - 1161. Available from: https://www.nature.com/articles/s41559-019-0950-y
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $32.00
Type: Journal Article

The productivity of marine ecosystems and the services they provide to humans are largely dependent on complex interactions between prey and predators. These are embedded in a diverse network of trophic interactions, resulting in a cascade of events following perturbations such as species extinction. The sheer scale of oceans, however, precludes the characterization of marine feeding networks through de novo sampling. This effort ought instead to rely on a combination of extensive data and inference. Here we investigate how the distribution of trophic interactions at the global scale shapes the marine fish food web structure. We hypothesize that the heterogeneous distribution of species ranges in biogeographic regions should concentrate interactions in the warmest areas and within species groups. We find that the inferred global metaweb of marine fish—that is, all possible potential feeding links between co-occurring species—is highly connected geographically with a low degree of spatial modularity. Metrics of network structure correlate with sea surface temperature and tend to peak towards the tropics. In contrast to open-water communities, coastal food webs have greater interaction redundancy, which may confer robustness to species extinction. Our results suggest that marine ecosystems are connected yet display some resistance to perturbations because of high robustness at most locations.

Powering Ocean Giants: The Energetics of Shark and Ray Megafauna

Lawson CL, Halsey LG, Hays GC, Dudgeon CL, Payne NL, Bennett MB, White CR, Richardson AJ. Powering Ocean Giants: The Energetics of Shark and Ray Megafauna. Trends in Ecology & Evolution [Internet]. 2019 . Available from: https://www.sciencedirect.com/science/article/abs/pii/S0169534719301910
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $37.95
Type: Journal Article

Shark and ray megafauna have crucial roles as top predators in many marine ecosystems, but are currently among the most threatened vertebrates and, based on historical extinctions, may be highly susceptible to future environmental perturbations. However, our understanding of their energetics lags behind that of other taxa. Such knowledge is required to answer important ecological questions and predict their responses to ocean warming, which may be limited by expanding ocean deoxygenation and declining prey availability. To develop bioenergetics models for shark and ray megafauna, incremental improvements in respirometry systems are useful but unlikely to accommodate the largest species. Advances in biologging tools and modelling could help answer the most pressing ecological questions about these iconic species.

An Integrated All-Atlantic Ocean Observing System in 2030

deYoung B, Visbeck M, Filho MCunha de A, Baringer MO’Neil, Black CA, Buch E, Canonico G, Coelho P, Duha JT, Edwards M, et al. An Integrated All-Atlantic Ocean Observing System in 2030. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00428/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ocean plays a vital role in the global climate system and biosphere, providing crucial resources for humanity including water, food, energy, and raw materials. There is a compelling need to develop an integrated basin-scale ocean observing system to support of ocean management. We articulate a vision for basin-scale ocean observing – A comprehensive All-Atlantic Ocean Observing Systems that benefits all of us living, working and relying on the ocean. Until now, basin-scale ocean observation has been conducted through loosely-aligned arrangements of national and international efforts. The All-Atlantic Ocean Observing System (AtlantOS) is an integrated concept for a forward-looking framework and basin-scale partnership to establish a comprehensive ocean observing system for the Atlantic Ocean as a whole. The system will be sustainable, multi-disciplinary, multi-thematic, efficient, and fit-for-purpose. Platforms, networks, and systems do already exist that operate at various maturity levels. AtlantOS will go beyond the status quo by bringing together the observing communities and countries of the Atlantic basin, providing the opportunity to join and support the system. AtlantOS will build upon the coordinated work of the Global Ocean Observing System (GOOS) and the Group on Earth Observations (GEO), two international bodies that support and coordinate global ocean observing. AtlantOS will complement those efforts and offers a new approach to organizing ocean observing at the basin-scale. AtlantOS will focus not only on the physics but also the biology, ecology and biogeochemistry of the ocean and seafloor and will enhance new partnerships among governments, science, civil society and the private sector.

Collaborative Science to Enhance Coastal Resilience and Adaptation

C. Nichols R, Wright LD, Bainbridge SJ, Cosby A, Hénaff A, Loftis JD, Cocquempot L, Katragadda S, Mendez GR, Letortu P, et al. Collaborative Science to Enhance Coastal Resilience and Adaptation. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00404/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Impacts from natural and anthropogenic coastal hazards are substantial and increasing significantly with climate change. Coasts and coastal communities are increasingly at risk. In addition to short-term events, long-term changes, including rising sea levels, increasing storm intensity, and consequent severe compound flooding events are degrading coastal ecosystems and threatening coastal dwellers. Consequently, people living near the coast require environmental intelligence in the form of reliable short-term and long-term predictions in order to anticipate, prepare for, adapt to, resist, and recover from hazards. Risk-informed decision making is crucial, but for the resulting information to be actionable, it must be effectively and promptly communicated to planners, decision makers and emergency managers in readily understood terms and formats. The information, critical to forecasts of extreme weather and flooding, as well as long-term projections of future risks, must involve synergistic interplay between observations and models. In addition to serving data for assimilation into models, the observations are also essential for objective validation of models via hind casts. Linked observing and modeling programs that involve stakeholder input and integrate engineering, environmental, and community vulnerability are needed to evaluate conditions prior to and following severe storm events, to update baselines, and to plan for future changes over the long term. In contrast to most deep-sea phenomena, coastal vulnerabilities are locally and regionally specific and prioritization of the most important observational data and model predictions must rely heavily on input from local and regional communities and decision makers. Innovative technologies and nature-based solutions are already helping to reduce vulnerability from coastal hazards in some localities but more focus on local circumstances, as opposed to global solutions, is needed. Agile and spatially distributed response capabilities will assist operational organizations in predicting, preparing for and mitigating potential community-wide disasters. This white paper outlines the rationale, synthesizes recent literature and summarizes some data-driven approaches to coastal resilience.

Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications

Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, DeGrandpre MD, Sosik HM, Church MJ, O’Brien TD, et al. Ocean Time Series Observations of Changing Marine Ecosystems: An Era of Integration, Synthesis, and Societal Applications. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00393/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Sustained ocean time series are critical for characterizing marine ecosystem shifts in a time of accelerating, and at times unpredictable, changes. They represent the only means to distinguish between natural and anthropogenic forcings, and are the best tools to explore causal links and implications for human communities that depend on ocean resources. Since the inception of sustained ocean observations, ocean time series have withstood many challenges, most prominently availability of uninterrupted funding and retention of trained personnel. This OceanObs’19 review article provides an overarching vision for sustained ocean time series observations for the next decade, focusing on the growing challenges of maintaining sustained ocean time series, including ship-based and autonomous coastal and open-ocean platforms, as well as remote sensing. In addition to increased diversification of funding sources to include the private sector, NGOs, and other groups, more effective engagement of stakeholders and other end-users will be critical to ensure the sustainability of ocean time series programs. Building a cohesive international time series network will require dedicated capacity to coordinate across observing programs and leverage existing infrastructure and platforms of opportunity. This review article outlines near-term observing priorities and technology needs; explores potential mechanisms to broaden ocean time series data applications and end-user communities; and describes current tools and future requirements for managing increasingly complex multi-platform data streams and developing synthesis products that support science and society. The actionable recommendations outlined herein ultimately form the basis for a robust, sustainable, fit-for-purpose time series network that will foster a predictive understanding of changing ocean systems for the benefit of society.

Model-Observations Synergy in the Coastal Ocean

De Mey-Frémaux P, Ayoub N, Barth A, Brewin R, Charria G, Campuzano F, Ciavatta S, Cirano M, Edwards CA, Federico I, et al. Model-Observations Synergy in the Coastal Ocean. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00436/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Integration of observations of the coastal ocean continuum, from regional oceans to shelf seas and estuaries/deltas with models, can substantially increase the value of observations and enable a wealth of applications. In particular, models can play a critical role at connecting sparse observations, synthesizing them, and assisting the design of observational networks; in turn, whenever available, observations can guide coastal model development. Coastal observations should sample the two-way interactions between nearshore, estuarine and shelf processes and open ocean processes, while accounting for the different pace of circulation drivers, such as the fast atmospheric, hydrological and tidal processes and the slower general ocean circulation and climate scales. Because of these challenges, high-resolution models can serve as connectors and integrators of coastal continuum observations. Data assimilation approaches can provide quantitative, validated estimates of Essential Ocean Variables in the coastal continuum, adding scientific and socioeconomic value to observations through applications (e.g., sea-level rise monitoring, coastal management under a sustainable ecosystem approach, aquaculture, dredging, transport and fate of pollutants, maritime safety, hazards under natural variability or climate change). We strongly recommend an internationally coordinated approach in support of the proper integration of global and coastal continuum scales, as well as for critical tasks such as community-agreed bathymetry and coastline products.

Debating the unknowns of marine oil exploration in Mexico

Quist L-M, Nygren A. Debating the unknowns of marine oil exploration in Mexico. The Extractive Industries and Society [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S2214790X19300425?dgcid=raven_sd_search_email
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $31.50
Type: Journal Article

Marine extraction accounts for one third of the world’s hydrocarbon production. Several analyses suggest that seismic surveys employed in oil exploration harm marine life; however, their long-term impacts have not been extensively studied. We examine debates between fishers, the oil industry, and governmental authorities over the effects of oil explorations in Tabasco, Mexico. The study employs ideas from historical ontology in tracing the contested production of truth-claims about exploration in the context of scientific uncertainty. It shows how actors, through their different engagements with the sea, and with different degrees of power, frame claims about the relations between exploration and fish. We argue that fishers, through their efforts to “think like fish” produce situated knowledges about the effects of oil exploration. They explain a disappearance of fish by their understanding that seismic surveys disturb fish migration, impair the hearing of fish and cause fish death. Oil company and governmental representatives frame the impacts of oil exploration as insignificant by separating environmental and social dimensions, by isolating individual exploration events, and by arguing that possible effects are transitional. Due to scientific indeterminacy, oil exploration is malleable in the hands of powerful political representations that understate its possible impacts on marine socio-environments.

Just Transformations to Sustainability

Bennett NJ, Blythe J, Cisneros-Montemayor AM, Singh GG, U. Sumaila R. Just Transformations to Sustainability. Sustainability [Internet]. 2019 ;11(14):3881. Available from: https://marxiv.org/bqkt5
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Transformations towards sustainability are needed to address many of the earth’s profound environmental and social challenges. Yet, actions taken to deliberately shift social–ecological systems towards more sustainable trajectories can have substantial social impacts and exclude people from decision-making processes. The concept of just transformations makes explicit a need to consider social justice in the process of shifting towards sustainability. In this paper, we draw on the transformations, just transitions, and social justice literature to advance a pragmatic framing of just transformations that includes recognitional, procedural and distributional considerations. Decision-making processes to guide just transformations need to consider these three factors before, during and after the transformation period. We offer practical and methodological guidance to help navigate just transformations in environmental management and sustainability policies and practice. The framing of just transformations put forward here might be used to inform decision making in numerous marine and terrestrial ecosystems, in rural and urban environments, and at various scales from local to global. We argue that sustainability transformations cannot be considered a success unless social justice is a central concern.

A System Dynamics Approach to Increasing Ocean Literacy

Brennan C, Ashley M, Molloy O. A System Dynamics Approach to Increasing Ocean Literacy. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00360/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ocean Literacy (OL) has multiple aspects or dimensions: from knowledge about how the oceans work and our impact on them, to attitudes toward topics such as sustainable fisheries, and our behaviour as consumers, tourists, policy makers, fishermen, etc. The myriad ways in which individuals, society and the oceans interact result in complex dynamic systems, composed of multiple interlinked chains of cause and effect. To influence our understanding of these systems, and thereby increase our OL, means to increase our knowledge of our own and others’ place and role in the web of interactions. Systems Thinking has a potentially important role to play in helping us to understand, explain and manage problems in the human-ocean relationship. Leaders in the OL field have recommended taking a systems approach in order to deal with the complexity of the human-ocean relationship. They contend that the inclusion of modelling and simulation will improve the effectiveness of educational initiatives. In this paper we describe a pilot study centred on a browser-based Simulation-Based Learning Environment (SBLE) designed for a general audience that uses System Dynamics simulation to introduce and reinforce systems-based OL learning. It uses a storytelling approach, by explaining the dynamics of coastal tourism through a System Dynamics model revealed in stages, supported by fact panels, pictures, simulation-based tasks, causal loop diagrams and quiz questions. Participants in the pilot study were mainly postgraduate students. A facilitator was available to participants at all times, as needed. The model is based on a freely available normalised coastal tourism model by Hartmut Bossel, converted to XMILE format. Through the identification and use of systems archetypes and general systems features such as feedback loops, we also tested for the acquisition of transferable skills and the ability to identify, apply or create sustainable solutions. Levels of OL were measured before and after interaction with the tool using pre- and post-survey questionnaires and interviews. Results showed moderate to very large positive effects on all the OL dimensions, which are also shown to be associated with predictors of behaviour change. These results provide motivation for further research.

Pages

Subscribe to RSS - Food for Thought