Human Impacts on the Environment

Worldwide oil and gas platform decommissioning: A review of practices and reefing options

Bull AScarboroug, Love MS. Worldwide oil and gas platform decommissioning: A review of practices and reefing options. Ocean & Coastal Management [Internet]. 2019 ;168:274 - 306. Available from: https://www.sciencedirect.com/science/article/pii/S0964569118304484
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Consideration of whether to completely remove an oil and gas production platform from the seafloor or to leave the submerged jacket as a reef is an imminent decision for California, as a number of offshore platforms in both state and federal waters are in the early stages of decommissioning. Laws require that a platform at the end of its production life be totally removed unless the submerged jacket section continues as a reef under state sponsorship. Consideration of the eventual fate of the populations of fishes and invertebrates beneath platforms has led to global reefing of the jacket portion of platforms instead of removal at the time of decommissioning. The construction and use of artificial reefs are centuries old and global in nature using a great variety of materials. The history that led to the reefing option for platforms begins in the mid-20th century in an effort for general artificial reefs to provide both fishing opportunities and increase fisheries production for a burgeoning U.S. population. The trend toward reefing platforms at end of their lives followed after the oil and gas industry installed thousands of standing platforms in the Gulf of Mexico where they had become popular fishing destinations. The National Fishing Enhancement Act and subsequent National Artificial Reef Plan laid the foundation for Rig-to-Reefs. Reefing platforms in the Gulf of Mexico is a well-established practice that is also applied globally. Deliberation of reefing decommissioned platforms and many years of scientific study beneath California platforms has culminated in a California State law that now allows consideration of the concept. This paper summarizes the history, practices, published science, and available information involved when considering the reefing option. It is hoped that this material will inform the public, policy makers, and regulators about their upcoming decisions.

Decommissioning of offshore oil and gas structures – Environmental opportunities and challenges

Brigitte S, Fowler AM, Macreadie PI, Palandro DA, Aziz AC, Booth DJ. Decommissioning of offshore oil and gas structures – Environmental opportunities and challenges. Science of The Total Environment [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S0048969718350551
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $41.95
Type: Journal Article

Thousands of offshore oil and gas structures are approaching the end of their operating life globally, yet our understanding of the environmental effects of different decommissioning strategies is incomplete. Past focus on a narrow set of criteria has limited evaluation of decommissioning effects, restricting decommissioning options in most regions. We broadly review the environmental effects of decommissioning, analyse case studies, and outline analytical approaches that can advance our understanding of ecological dynamics on oil and gas structures. We find that ecosystem functions and services increase with the age of the structure and vary with geographical setting, such that decommissioning decisions need to take an ecosystem approach that considers their broader habitat and biodiversity values. Alignment of decommissioning assessment priorities among regulators and how they are evaluated, will reduce the likelihood of variable and sub-optimal decommissioning decisions. Ultimately, the range of allowable decommissioning options must be expanded to optimise the environmental outcomes of decommissioning across the broad range of ecosystems in which platforms are located.

Assessing Benthic Responses to Fishing Disturbance Over Broad Spatial Scales That Incorporate High Environmental Variation

Lundquist CJ, Bowden D, Cartner K, Stephenson F, Tuck I, Hewitt JE. Assessing Benthic Responses to Fishing Disturbance Over Broad Spatial Scales That Incorporate High Environmental Variation. Frontiers in Marine Science [Internet]. 2018 ;5. Available from: https://www.frontiersin.org/article/10.3389/fmars.2018.00405/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine benthic habitats are modified by a number of human-related disturbances. When these disturbances occur at large scales over areas of high environmental variability, it is difficult to assess impacts using metrics such as species richness or individual species distributions because of varying species-specific responses to environmental drivers (e.g., exposure, sediment, temperature). Impact assessment can also be problematic when assessed at broad spatial scales because of regional heterogeneity of species pools. Even when effects on individual species can be detected, it is difficult to upscale from individual species to ecosystem scale effects. Here, we use a functional group approach to assess broad scale patterns in ecological processes with respect to fishing and environmental drivers. We used data from field surveys of benthic communities from two large, widely separated areas in New Zealand’s EEZ (Chatham Rise and Challenger Plateau). We assigned 828 taxonomic units (most identified to species) into functional groups related to important ecosystem processes and likely sensitivity to, and recovery from, fishing disturbance to the seafloor. These included: opportunistic early colonists; substrate stabilisers (e.g., tube mat formers); substrate destabilisers; shell hash-creating species; emergent epifauna; burrowers; and predators and scavengers. Effects of fishing disturbance on benthic functional composition were observed, even at this broad spatial scale. Responses varied between functional groups, with some being tolerant of fishing impacts and others showing rapid declines with minimal fishing effort. The use of a functional group approach facilitates assessment of impacts across regions and species, allowing for improved generalisations of impacts to inform management and decision making.

The influence of cooperative foraging with fishermen on the dynamics of a bottlenose dolphin population

Bezamat C, Simões-Lopes PC, Castilho PV, Daura-Jorge FG. The influence of cooperative foraging with fishermen on the dynamics of a bottlenose dolphin population. Marine Mammal Science [Internet]. 2018 . Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/mms.12565
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $38.00
Type: Journal Article

Recent years have seen an increasing interest in individual behavioral variation. However, the implications of such variation for population dynamics are often unknown. We studied the dynamics of a bottlenose dolphin (Tursiops truncatus gephyreus) population from southern Brazil, where some individuals forage cooperatively with artisanal fishermen. We fitted mark‐recapture models to 10 yr of photo‐identification data to investigate the influence of this foraging specialization on dolphins’ population parameters, controlling for sex and ranging behavior. We estimated adult survival to be high (0.949 ± 0.015 SE), weakly influenced by home range size, sex or the frequency of interaction with fishermen. The slightly higher survival probability for individuals with smaller home ranges could stem from the benefits of reduced spatial requirements implied by the specialized foraging. Foraging also influenced the probability of resighting individuals, and there was no temporary or permanent emigration. Abundance fluctuated slightly over the years from 54 (95% CI = 49–59) to 60 (95% CI = 52–69) individuals, with no evident population trend. Despite such apparent population stability, we confirm this population remains small and geographically isolated which may threaten its viability and the viability of its unusual, localized foraging specialization. Our study also illustrates how accounting for individual variation can portray animal population dynamics more realistically.

Change in singing behavior of humpback whales caused by shipping noise

Tsujii K, Akamatsu T, Okamoto R, Mori K, Mitani Y, Umeda N. Change in singing behavior of humpback whales caused by shipping noise Li S. PLOS ONE [Internet]. 2018 ;13(10):e0204112. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0204112
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Reactions of singing behavior of individual humpback whales (Megaptera novaeangliae) to a specific shipping noise were examined. Two autonomous recorders separated by 3.0 km were used for the acoustic monitoring of each individual song sequence. A passenger-cargo liner was operated once per day, and other large ship noise was excluded given the remote location of the Ogasawara Islands, 1000 km south of Tokyo. In total, locations of between 26 and 27 singers were measured acoustically using time arrival difference at both stereo recorders on the ship presence and absence days, respectively. Source level of the ship (157 dB rms re 1μPa) was measured separately in deep water. Fewer whales sang nearby, within 500 m, of the shipping lane. Humpback whales reduced sound production after the ship passed, when the minimum distance to the whale from the ship trajectory was 1200 m. In the Ogasawara water, humpback whales seemed to stop singing temporarily rather than modifying sound characteristics of their song such as through frequency shifting or source level elevation. This could be a cost effective adaptation because the propagation loss at 500 m from the sound source is as high as 54 dB. The focal ship was 500 m away within several minutes. Responses may differ where ship traffic is heavy, because avoiding an approaching ship may be difficult when many sound sources exist.

Exploring variability in environmental impact risk from human activities across aquatic ecosystems

Borgwardt F, Robinson L, Trauner D, Teixeira H, Nogueira AJA, Lillebø AI, Piet G, Kuemmerlen M, O'Higgins T, McDonald H, et al. Exploring variability in environmental impact risk from human activities across aquatic ecosystems. Science of The Total Environment [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S0048969718342396
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Aquatic ecosystems are under severe pressure. Human activities introduce an array of pressures that impact ecosystems and their components. In this study we focus on the aquatic domains of fresh, coastal and marine waters, including rivers, lakes and riparian habitats to transitional, coastal as well as shelf and oceanic habitats. In an environmental risk assessment approach, we identified impact chains that link 45 human activities through 31 pressures to 82 ecosystem components. In this linkage framework >22,000 activity-pressure-ecosystem component interactions were found across seven European case studies. We identified the environmental impact risk posed by each impact chain by first categorically weighting the interactions according to five criteria: spatial extent, dispersal potential, frequency of interaction, persistence of pressure and severity of the interaction, where extent, dispersal, frequency and persistence account for the exposure to risk (spatial and temporal), and the severity accounts for the consequence of the risk. After assigning a numerical score to each risk criterion, we came up with an overall environmental impact risk score for each impact chain. This risk score was analysed in terms of (1) the activities and pressures that introduce the greatest risk to European aquatic domains, and (2) the aquatic ecosystem components and realms that are at greatest risk from human activities. Activities related to energy production were relevant across the aquatic domains. Fishing was highly relevant in marine and environmental engineering in fresh waters. Chemical and physical pressures introduced the greatest risk to the aquatic realms. Ecosystem components that can be seen as ecotones between different ecosystems had high impact risk. We show how this information can be used in informing management on trade-offs in freshwater, coastal and marine resource use and aid decision-making.

Impact of error in ocean dynamical background, on the transport of underwater spilled oil

Li Y, Chen H, Lv X. Impact of error in ocean dynamical background, on the transport of underwater spilled oil. Ocean Modelling [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S146350031830088X
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Based on a validated underwater oil spill model and the hydrodynamic background provided by an unstructured grid, finite-volume, coastal ocean model (FVCOM), a series of numerical experiments are conducted to study the impact of error in ocean dynamical background currents on the 3D transport of underwater spilled oil, in terms of three metrics including oil centroid position, sweeping area, and sweeping volume. Numerical result shows that a larger error in ocean dynamical background currents results in a larger model error expectation and uncertainty for all three metrics. As model time increases, the model error mainly increases and the error growth rate varies unevenly. The sensitivity of the oil spill model to background current error can be interpreted as an integrated result of the temporal and spatial variations of the background current and the movement of oil droplets of different sizes.

Bottom trawl fishing footprints on the world’s continental shelves

Amoroso RO, C. Pitcher R, Rijnsdorp AD, McConnaughey RA, Parma AM, Suuronen P, Eigaard OR, Bastardie F, Hintzen NT, Althaus F, et al. Bottom trawl fishing footprints on the world’s continental shelves. Proceedings of the National Academy of Sciences [Internet]. 2018 :201802379. Available from: http://www.pnas.org/content/early/2018/10/03/1802379115
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.

Distribution, uses, and anthropic pressures on reef ecosystems of Mexico

Santander-Monsalvo J, Espejel I, Ortiz-Lozano L. Distribution, uses, and anthropic pressures on reef ecosystems of Mexico. Ocean & Coastal Management [Internet]. 2018 ;165:39 - 51. Available from: https://www.sciencedirect.com/science/article/pii/S0964569118301248
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Reef ecosystems are amply distributed and ecologically relevant in Mexico, however, there is not an integrated inventory of these ecosystems, and information about uses and pressures is disperse. With the aim of generating updated information that allows to know the presence and distribution of the different types of reefs (coral, rocky-coral, rocky, and rocky with Macrocystis pyrifera), as well as to know the uses and pressures to which they are subjected. In this article we present an inventory of the 755 reef ecosystems known in Mexico based in a literature review of 194 documents and validated by informal interviews to key Mexican experts. Mexican reefs are distributed in seven regions identified for reef management purposes, according to the combination of eight maritime regionalization proposals of the Mexican seas. The main uses of reef ecosystems are fishing, tourism, nautical, and mining, which produce eight main pressures: pollution, habitat fragmentation, coral bleaching, overfishing, exotic species introduction, sedimentation, coral mortality, and coral diseases. These uses and pressures are distributed heterogeneously in the seven reef regions. The main conservation tool used by Mexican Federal Government to protect these reefs are the Marine Protected Areas (MPAs). Almost 45% of the listed reefs are within one of the 30 Mexican MPAs, being the coral reefs the ones that predominate in this protection scheme. In this research we present relevant information for the management of the reef ecosystems of Mexico, which support the debate on the analysis of public policies for their conservation.

Ocean sprawl facilitates dispersal and connectivity of protected species

Henry L-A, Mayorga-Adame CG, Fox AD, Polton JA, Ferris JS, McLellan F, McCabe C, Kutti T, J. Roberts M. Ocean sprawl facilitates dispersal and connectivity of protected species. Scientific Reports [Internet]. 2018 ;8(1). Available from: https://www.nature.com/articles/s41598-018-29575-4
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Highly connected networks generally improve resilience in complex systems. We present a novel application of this paradigm and investigated the potential for anthropogenic structures in the ocean to enhance connectivity of a protected species threatened by human pressures and climate change. Biophysical dispersal models of a protected coral species simulated potential connectivity between oil and gas installations across the North Sea but also metapopulation outcomes for naturally occurring corals downstream. Network analyses illustrated how just a single generation of virtual larvae released from these installations could create a highly connected anthropogenic system, with larvae becoming competent to settle over a range of natural deep-sea, shelf and fjord coral ecosystems including a marine protected area. These results provide the first study showing that a system of anthropogenic structures can have international conservation significance by creating ecologically connected networks and by acting as stepping stones for cross-border interconnection to natural populations.

Pages

Subscribe to RSS - Human Impacts on the Environment