Natural Sciences

A 3000 year record of Caribbean reef urchin communities reveals causes and consequences of long-term decline in Diadema antillarum

Cramer KL, O’Dea A, Carpenter C, Norris RD. A 3000 year record of Caribbean reef urchin communities reveals causes and consequences of long-term decline in Diadema antillarum. Ecography [Internet]. 2017 . Available from: http://onlinelibrary.wiley.com/doi/10.1111/ecog.02513/abstract
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $38.00
Type: Journal Article

Urchins are the last abundant grazers of macroalgae on most Caribbean reefs following the historical overexploitation of herbivorous fishes. The long-spined urchin Diadema antillarum was particularly effective at controlling macroalgae and facilitating coral dominance on Caribbean reefs until its ecological extinction from a catastrophic disease epidemic in the early 1980s. Despite their important role in the structure and functioning of Caribbean reef ecosystems, the natural dynamics of Caribbean reef urchin communities are poorly known due to the paucity of ecological survey data prior to large-scale human disturbances and the Diadema dieoff. To help resolve the baseline abundances and ecological roles of common urchin taxa, we track changes in urchin abundance and composition over the past 3000 yr from analysis of subfossil urchin spines preserved in reef matrix cores collected in Caribbean Panama. Echinometra consistently dominated the subfossil spine assemblage, while Diadema was consistently rare in the subfossil record in this region. Rather than increasing during a period of heightened human exploitation of their fish competitors and predators, Diadema began declining over a millennium ago. Convergent cross mapping (CCM) causality analyses reveal that Diadema abundance is causally related to coral community composition. Diadema is negatively affected by Acropora cervicornis dominance, likely due to the tight association between this coral and the threespot damselfish, an effective Diadema competitor. Conversely, Diadema positively affects the abundance of the coral Madracis mirabilis, possibly via its control of macroalgae. Causal relationships were not detected among abundances of individual urchin taxa, indicating that inter-specific echinoid competition is not a factor limiting Diadema recovery. Our detailed record of prehistorical and historical urchin community dynamics suggests that the failure of Diadema to recover over 30 yr after its mass mortality event may be due in part to the prey release of damselfish following the long-term overfishing of piscivorous fishes.

Deep trees: Woodfall biodiversity dynamics in present and past oceans

Sigwart JD. Deep trees: Woodfall biodiversity dynamics in present and past oceans. Deep Sea Research Part II: Topical Studies in Oceanography [Internet]. 2017 ;137:282 - 287. Available from: http://www.sciencedirect.com/science/article/pii/S0967064516301825
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Marine deposits of sunken wood provide an important habitat for deep-sea biota, including an extensive wood-endemic invertebrate fauna. These habitats are important in their own right; many species on organic falls are not able to survive in other deep sea ecosystems. Evolutionary transitions of species among various chemosynthesis-based ecosystems does not proceed deliberately from organic falls toward hydrothermal vents. Polyplacophoran molluscs (chitons) are generally rare in deep-sea systems but are found in comparatively high diversity and abundance on tropical sunken wood. A new time-calibrated phylogeny for the predominantly deep-sea order Lepidopleurida shows the chiton lineages found in sunken wood habitats do not comprise a single clade or radiation, but represents a minimum of three independent radiations in the Pacific alone. Most marine invertebrate groups diversified in the deep sea following the end Cretaceous extinction event; by contrast, sunken-wood chitons may have persisted in these habitats for longer than other animals. Fossil chitons from the early Carboniferous (ca. 350 Mya) have strong similarities to modern wood-endemic taxa, yet the common ancestor of living Lepidopleurida occurred much later in the Triassic and did not apparently rely on woodfall. Clades within Lepidopleurida that occupy wood habitats in the tropical Pacific probably arose in the Jurassic, which corresponds to evidence from the fossil record, but with an additional separate colonisation more recently in the early Paleogene. Wood-endemic chiton species encompass multiple independent evolutionary origins of co-occurring wood species, and these separate lineages correspond to differences in micohabitat and feeding strategies. These patterns demonstrate the ongoing evolutionary linkages between terrestrial and deep marine environments, and the opportunistic adaptations of deep-sea organisms.

Social interactions among grazing reef fish drive material flux in a coral reef ecosystem

Gil MA, Hein AM. Social interactions among grazing reef fish drive material flux in a coral reef ecosystem. Proceedings of the National Academy of Sciences [Internet]. 2017 ;114(18):4703 - 4708. Available from: http://www.pnas.org/content/114/18/4703.abstract
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $10.00
Type: Journal Article

In human financial and social systems, exchanges of information among individuals cause speculative bubbles, behavioral cascades, and other correlated actions that profoundly influence system-level function. Exchanges of information are also widespread in ecological systems, but their effects on ecosystem-level processes are largely unknown. Herbivory is a critical ecological process in coral reefs, where diverse assemblages of fish maintain reef health by controlling the abundance of algae. Here, we show that social interactions have a major effect on fish grazing rates in a reef ecosystem. We combined a system for observing and manipulating large foraging areas in a coral reef with a class of dynamical decision-making models to reveal that reef fish use information about the density and actions of nearby fish to decide when to feed on algae and when to flee foraging areas. This “behavioral coupling” causes bursts of feeding activity that account for up to 68% of the fish community’s consumption of algae. Moreover, correlations in fish behavior induce a feedback, whereby each fish spends less time feeding when fewer fish are present, suggesting that reducing fish stocks may not only reduce total algal consumption but could decrease the amount of algae each remaining fish consumes. Our results demonstrate that social interactions among consumers can have a dominant effect on the flux of energy and materials through ecosystems, and our methodology paves the way for rigorous in situ measurements of the behavioral rules that underlie ecological rates in other natural systems.

Habitat type and beach exposure shape fish assemblages in the surf zones of ocean beaches

Borland HP, Schlacher TA, Gilby BL, Connolly RM, Yabsley NA, Olds AD. Habitat type and beach exposure shape fish assemblages in the surf zones of ocean beaches. Marine Ecology Progress Series [Internet]. 2017 ;570:203 - 211. Available from: http://www.int-res.com/abstracts/meps/v570/p203-211/
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

The surf zones of ocean beaches are prime fishing sites and provide habitat for a diversity of fish species. The spatial composition of seascapes shapes fish abundance and diversity in most coastal ecosystems, but it remains untested whether seascape effects operate on ocean beaches. This study used the surf zones of sandy beaches in eastern Australia as a model system to contrast fish assemblages between the 2 main surf habitats (nearshore troughs and offshore bars), and test how habitat partitioning changes with beach exposure, wave conditions, seascape connectivity (i.e. proximity to estuaries and rocky headlands) and tide. Fish were sampled with baited remote underwater video stations from the surf zones of 18 sandy beaches in southern Queensland and northern New South Wales. Habitat type and beach exposure combined to shape fish abundance and diversity in the surf. Fish assemblages always differed between nearshore trough and offshore bar habitats; beach exposure was also important to surf fishes but did not alter the priority effects of habitat partitioning. Beach exposure is an important predictor of faunal assemblages on ocean beaches and is often used as a surrogate in conservation planning. Our results show, however, that surf zones are not single uniform spatial units but are composed of topographically and hydrodynamically distinct habitats that support correspondingly distinct fish assemblages. Because fishing effort also differs between surf habitats, fisheries management and spatial conservation planning need to reflect these spatial nuances in the surf zones of ocean beaches.

Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters

Blewett TA, Leonard EM. Mechanisms of nickel toxicity to fish and invertebrates in marine and estuarine waters. Environmental Pollution [Internet]. 2017 ;223:311 - 322. Available from: http://www.sciencedirect.com/science/article/pii/S0269749116317766
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

In freshwater settings the toxicity of the trace metal nickel (Ni) is relatively well understood. However, until recently, there was little knowledge regarding Ni toxicity in waters of higher salinity, where factors such as water chemistry and the physiology of estuarine and marine biota would be expected to alter toxicological impact. This review summarizes recent literature investigating Ni toxicity in marine and estuarine invertebrates and fish. As in freshwater, three main mechanisms of Ni toxicity exist: ionoregulatory impairment, inhibition of respiration, and promotion of oxidative stress. However, unlike in freshwater biota, where mechanisms of toxicity are largely Class-specific, the delineation of toxic mechanisms between different species is less defined. In general, despite changes in Ni speciation in marine waters, organism physiology appears to be the main driver of toxic impact, a fact that will need to be accounted for when adapting regulatory tools (such as bioavailability normalization) from freshwater to estuarine and marine environments.

MRI and MRS on preserved samples as a tool in fish ecology

Bock C, Wermter FC, Mintenbeck K. MRI and MRS on preserved samples as a tool in fish ecology. Magnetic Resonance Imaging [Internet]. 2017 ;38:39 - 46. Available from: http://www.sciencedirect.com/science/article/pii/S0730725X16302648
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) gain increasing attention and importance as a tool in marine ecology. So far, studies were largely limited to morphological studies, e.g. for the creation of digital libraries. Here, the utility of MRI and MRS for ecologists is tested and exemplified using formalin preserved samples of the Antarctic silverfish, Pleuragramma antarctica. As this species lacks a swim bladder, buoyancy is attained by the deposition of large amounts of lipids that are mainly stored in subcutaneous and intermuscular lipid sacs. In this study MRI and MRS are not only used to study internal morphology, but additionally to investigate functional morphology and to measure parameters of high ecological interest. The data are compared with literature data obtained by means of traditional ecological methods.

The results from this study show that MR scans are not only an alternative to histological sections (as shown before), but even allow the visualization of particular features in delicate soft tissues, such as Pleuragramma's lipid sacs. 3D rendering techniques proved to be a useful tool to study organ volumes and lipid content, which usually requires laborious chemical lipid extraction and analysis. Moreover, the application of MRS even allows for an analysis of lipids and fatty acids within lipid sacs, which wouldn't be possible using destructive methods. MRI and MRS, in particular when used in combination, have the capacity to provide useful data on parameters of high ecological relevance and thus have proven to be a highly valuable addition, if not alternative, to the classical methods.

A new marine measure enhancing Zostera marina seed germination and seedling survival

Sousa AI, Valdemarsen T, Lillebø AI, Jørgensen L, Flindt MR. A new marine measure enhancing Zostera marina seed germination and seedling survival. Ecological Engineering [Internet]. 2017 ;104:131 - 140. Available from: http://www.sciencedirect.com/science/article/pii/S0925857417301702
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Seagrass global distribution has declined in the last decades due to many causes, and the implementation of recovery programmes as well as the development of new restoration techniques are needed. This work describes the development of an innovative restoration measure to enhance Zostera marina (eelgrass) seed germination and seedling survival in sediments inhabited by lugworms (Arenicola marina) and its validation in mesocosm experiments. The technique consists of placing 3 cm thick biodegradable coconut fibre mats (membrane) in the surface sediment to exclude the negative effects of sediment reworking (burial of seeds and destabilization/burial of seedlings). Two different flume mesocosm experiments were setup to test for: i) the effect of membranes on burial of Z. marina seeds; ii) the effect of membranes on survival and growth of Z. marina seedlings. The experiments were run for 8 and 10 weeks, respectively. Results show that the membrane was effectively preventing critical burial of Z. marina seeds as all seed mimics placed on the surface initially were recovered from 0 to 4 cm depth in the plots with membrane, while in the absence of the membrane, all seeds were buried to below the critical depth of 5–6 cm. The membrane also significantly enhanced the survival of Z. marina seedlings. The initial seedling density was in both cases 30/m2 and the final density was 26.0 ± 3.3/m2 with membrane versus 8.0 ± 1.6/m2without membrane. This new marine restoration measure showed to be effective on the reduction of the physical stress imposed by sediment reworking lugworms on Z. marina recovery, as a membrane keeps seeds at optimal depth for germination and protects seedlings from burial and erosion. In comparison to other measures, this new restoration technique is a low-tech nature-based solution. The results clearly show that this restoration technique can support Z. marina recovery through seeds and seedling protection. In this way, this technique contributes to decrease Z. marina vulnerability and increase its natural recovery potential and stability.

Fish-based indicators of estuarine condition that do not require reference data

Tweedley JR, Warwick RM, Hallett CS, Potter IC. Fish-based indicators of estuarine condition that do not require reference data. Estuarine, Coastal and Shelf Science [Internet]. 2017 . Available from: http://www.sciencedirect.com/science/article/pii/S0272771417301014
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

The species composition of fish communities in 15 microtidal estuaries in south-western Australia, ranging from permanently-open to normally-closed, is shown to be related to the geomorphological and hydrological regimes and not to environmental condition. This study then explored the effectiveness of using qualitative taxonomic distinctness and ABC curves for fish data as indicators of the environmental condition in nearshore, shallow waters of these estuaries and, in the case of taxonomic distinctness, also of their offshore, deeper waters. Neither of these indices require spatial or temporal reference data, which may be either prohibitively expensive and time-consuming to collect or unavailable. Taxonomic distinctness, in both nearshore and offshore waters, varied consistently among estuaries in relation to their recorded environmental status, and is thus a good indicator of overall estuarine condition. ABC analyses, however, did not prove a good measure of the environmental condition of the estuaries, because their results largely reflect differences in accessibility of the estuary to marine estuarine-opportunist species and especially those that grow to a larger size. It is concluded that taxonomic distinctness indices provide a rapid and cost-effective method for assessing the environmental condition of estuaries, particularly those with limited spatial or temporal reference data.

Gap analysis on the biology of Mediterranean marine fishes

Dimarchopoulou D, Stergiou KI, Tsikliras AC. Gap analysis on the biology of Mediterranean marine fishes. PLOS ONE [Internet]. 2017 ;12(4):e0175949. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175949
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

We estimated the current level of knowledge concerning several biological characteristics of the Mediterranean marine fishes by carrying out a gap analysis based on information extracted from the literature, aiming to identify research trends and future needs in the field of Mediterranean fish biology that can be used in stock assessments, ecosystem modeling and fisheries management. Based on the datasets that emerged from the literature review, there is no information on any biological characteristic for 43% (n = 310) of the Mediterranean fish species, whereas for an additional 15% (n = 109) of them there is information about just one characteristic. The gap between current and desired knowledge (defined here as having information on most biological characteristics for at least half of the Mediterranean marine fishes) is smaller in length-weight relationships, which have been studied for 43% of the species, followed by spawning (39%), diet (29%), growth (25%), maturity (24%), lifespan (19%) and fecundity (17%). The gap is larger in natural mortality for which information is very scarce (8%). European hake (Merluccius merluccius), red mullet (Mullus barbatus), annular seabream (Diplodus annularis), common pandora (Pagellus erythrinus), European anchovy (Engraulis encrasicolus), European pilchard (Sardina pilchardus) and bogue (Boops boops) were the most studied species, while sharks and rays were among the least studied ones. Only 25 species were fully studied, i.e. there was available information on all their biological characteristics. The knowledge gaps per characteristic varied among the western, central and eastern Mediterranean subregions. The number of available records per species was positively related to total landings, while no relationship emerged with its maximum reported length, trophic level and commercial value. Future research priorities that should be focused on less studied species (e.g. sharks and rays) and mortality/fecundity instead of length-weight relationships, as well as the economy of scientific sampling (using the entire catch to acquire data on as many biological characteristics as possible) are discussed.

Diet and condition of mesopredators on coral reefs in relation to shark abundance

Barley SC, Meekan MG, Meeuwig JJ. Diet and condition of mesopredators on coral reefs in relation to shark abundance. PLOS ONE [Internet]. 2017 ;12(4):e0165113. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0165113
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Reef sharks may influence the foraging behaviour of mesopredatory teleosts on coral reefs via both risk effects and competitive exclusion. We used a “natural experiment” to test the hypothesis that the loss of sharks on coral reefs can influence the diet and body condition of mesopredatory fishes by comparing two remote, atoll-like reef systems, the Rowley Shoals and the Scott Reefs, in northwestern Australia. The Rowley Shoals are a marine reserve where sharks are abundant, whereas at the Scott Reefs numbers of sharks have been reduced by centuries of targeted fishing. On reefs where sharks were rare, the gut contents of five species of mesopredatory teleosts largely contained fish while on reefs with abundant sharks, the same mesopredatory species consumed a larger proportion of benthic invertebrates. These measures of diet were correlated with changes in body condition, such that the condition of mesopredatory teleosts was significantly poorer on reefs with higher shark abundance. Condition was defined as body weight, height and width for a given length and also estimated via several indices of condition. Due to the nature of natural experiments, alternative explanations cannot be discounted. However, the results were consistent with the hypothesis that loss of sharks may influence the diet and condition of mesopredators and by association, their fecundity and trophic role. Regardless of the mechanism (risk effects, competitive release, or other), our findings suggest that overfishing of sharks has the potential to trigger trophic cascades on coral reefs and that further declines in shark populations globally should be prevented to protect ecosystem health.

Pages

Subscribe to RSS - Natural Sciences