Natural Sciences

Better Model Transfers Require Knowledge of Mechanisms

Bouchet PJ, A. Peterson T, Zurell D, Dormann CF, Schoeman D, Ross RE, Snelgrove P, Sequeira AMM, Whittingham MJ, Wang L, et al. Better Model Transfers Require Knowledge of Mechanisms. Trends in Ecology & Evolution [Internet]. 2019 . Available from: https://www.cell.com/trends/ecology-evolution/fulltext/S0169-5347(19)30111-9
Freely available?: 
Yes
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $31.50
Type: Journal Article

Model transferability is an emerging and important branch of predictive science that has grown primarily from a need to produce ecological forecasts in the face of widespread data deficiency and escalating environmental novelty. In our recent article in Trends in Ecology and Evolution [1], we outlined some of the major roadblocks that currently undermine the practice of model transfers in ecology. The response of Radchuk et al. [2] to our work stresses the value of considering ‘first principles’ in projections of ecosystem change [3] and offers insights into outstanding challenges specific to mechanistic (synonym: process-based) models [4].

Observing Sea States

Ardhuin F, Stopa JE, Chapron B, Collard F, Husson R, Jensen RE, Johannessen J, Mouche A, Passaro M, Quartly GD, et al. Observing Sea States. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00124/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Sea state information is needed for many applications, ranging from safety at sea and on the coast, for which real time data are essential, to planning and design needs for infrastructure that require long time series. The definition of the wave climate and its possible evolution requires high resolution data, and knowledge on possible drift in the observing system. Sea state is also an important climate variable that enters in air-sea fluxes parameterizations. Finally, sea state patterns can reveal the intensity of storms and associated climate patterns at large scales, and the intensity of currents at small scales. A synthesis of user requirements leads to requests for spatial resolution at kilometer scales, and estimations of trends of a few centimeters per decade. Such requirements cannot be met by observations alone in the foreseeable future, and numerical wave models can be combined with in situ and remote sensing data to achieve the required resolution. As today's models are far from perfect, observations are critical in providing forcing data, namely winds, currents and ice, and validation data, in particular for frequency and direction information, and extreme wave heights. In situ and satellite observations are particularly critical for the correction and calibration of significant wave heights to ensure the stability of model time series. A number of developments are underway for extending the capabilities of satellites and in situ observing systems. These include the generalization of directional measurements, an easier exchange of moored buoy data, the measurement of waves on drifting buoys, the evolution of satellite altimeter technology, and the measurement of directional wave spectra from satellite radar instruments. For each of these observing systems, the stability of the data is a very important issue. The combination of the different data sources, including numerical models, can help better fulfill the needs of users.

Habitat Use and Behavior of Multiple Species of Marine Turtles at a Foraging Area in the Northeastern Gulf of Mexico

Wildermann NE, Sasso CR, Stokes LW, Snodgrass D, Fuentes MMPB. Habitat Use and Behavior of Multiple Species of Marine Turtles at a Foraging Area in the Northeastern Gulf of Mexico. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00155/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Multi-species conservation strategies can be useful to maximize allocation of resources. To effectively plan for multi-species management practices, it is important to have a robust understanding of the variability in the spatial and behavioral ecology of sympatric species. To address this in the context of marine turtles, this study explored fine-scale habitat use by three sympatric species [juvenile green turtles (Chelonia mydas), Kemp’s ridley turtles (Lepidochelys kempii) and loggerhead turtles (Caretta caretta)] in a foraging area near Crystal River, Florida, United States. By combining sighting surveys and satellite tracking methods, we found that the distribution of the three species of marine turtles in this region overlapped both in space and time. We also observed differences in the fine-scale location of hotspots and in-water behavior among species, with some degree of apparent habitat partitioning. Habitat partitioning was particularly evident when assessing the diving and surfacing behavior of tracked turtles, with some degree of differentiation in diel diving patterns, particularly depths utilized during daytime/nighttime and the dive/surface duration. Our study provides ecological baseline data on the spatial overlap, habitat use and behavior of three sympatric marine turtle species, which can inform future management strategies at nearshore marine habitats in the Northeastern Gulf of Mexico.

Killer whales redistribute white shark foraging pressure on seals

Jorgensen SJ, Anderson S, Ferretti F, Tietz JR, Chapple T, Kanive P, Bradley RW, Moxley JH, Block BA. Killer whales redistribute white shark foraging pressure on seals. Scientific Reports [Internet]. 2019 ;9(1). Available from: https://www.nature.com/articles/s41598-019-39356-2
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Predatory behavior and top-down effects in marine ecosystems are well-described, however, intraguild interactions among co-occurring marine top predators remain less understood, but can have far reaching ecological implications. Killer whales and white sharks are prominent upper trophic level predators with highly-overlapping niches, yet their ecological interactions and subsequent effects have remained obscure. Using long-term electronic tagging and survey data we reveal rare and cryptic interactions between these predators at a shared foraging site, Southeast Farallon Island (SEFI). In multiple instances, brief visits from killer whales displaced white sharks from SEFI, disrupting shark feeding behavior for extended periods at this aggregation site. As a result, annual predations of pinnipeds by white sharks at SEFI were negatively correlated with close encounters with killer whales. Tagged white sharks relocated to other aggregation sites, creating detectable increases in white shark density at Ano Nuevo Island. This work highlights the importance of risk effects and intraguild relationships among top ocean predators and the value of long-term data sets revealing these consequential, albeit infrequent, ecological interactions.

Improving surface tidal accuracy through two-way nesting in a global ocean model

Jeon C-H, Buijsman MC, Wallcraft AJ, Shriver JF, Arbic BK, Richman JG, Hogan PJ. Improving surface tidal accuracy through two-way nesting in a global ocean model. Ocean Modelling [Internet]. In Press . Available from: https://www.sciencedirect.com/science/article/pii/S1463500318301665
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

In global ocean simulations, forward (non-data-assimilative) tide models generally feature large sea-surface-height errors near Hudson Strait in the North Atlantic Ocean with respect to altimetry-constrained tidal solutions. These errors may be associated with tidal resonances that are not well resolved by the complex coastal-shelf bathymetry in low-resolution simulations. An online two-way nesting framework has been implemented to improve global surface tides in the HYbrid Coordinate Ocean Model (HYCOM). In this framework, a high-resolution child domain, covering Hudson Strait, is coupled with a relatively low-resolution parent domain for computational efficiency. Data such as barotropic pressure and velocity are exchanged between the child and parent domains with the external coupler OASIS3-MCT. The developed nesting framework is validated with semi-idealized basin-scale model simulations. The M2 sea-surface heights show very good accuracy in the one-way and two-way nesting simulations in Hudson Strait, where large tidal elevations are observed. In addition, the mass and tidal energy flux are not adversely impacted at the nesting boundaries in the semi-idealized simulations. In a next step, the nesting framework is applied to a realistic global tide simulation. In this simulation, the resolution of the child domain (1/75°) is three times as fine as that of the parent domain (1/25°). The M2 sea-surface-height root-mean-square errors with tide gauge data and the altimetry-constrained global FES2014 and TPXO9-atlas tidal solutions are evaluated for the nesting and no-nesting solutions. The better resolved coastal bathymetry and the finer grid in the child domain improve the local tides in Hudson Strait and Bay, and the back-effect of the coastal tides induces an improvement of the barotropic tides in the open ocean of the Atlantic.

Microbial ecosystem dynamics drive fluctuating nitrogen loss in marine anoxic zones

Penn JL, Weber T, Chang BX, Deutsch C. Microbial ecosystem dynamics drive fluctuating nitrogen loss in marine anoxic zones. Proceedings of the National Academy of Sciences [Internet]. 2019 :201818014. Available from: https://www.pnas.org/content/early/2019/03/22/1818014116.abstract?etoc
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The dynamics of nitrogen (N) loss in the ocean’s oxygen-deficient zones (ODZs) are thought to be driven by climate impacts on ocean circulation and biological productivity. Here we analyze a data-constrained model of the microbial ecosystem in an ODZ and find that species interactions drive fluctuations in local- and regional-scale rates of N loss, even in the absence of climate variability. By consuming O2 to nanomolar levels, aerobic nitrifying microbes cede their competitive advantage for scarce forms of N to anaerobic denitrifying bacteria. Because anaerobes cannot sustain their own low-O2 niche, the physical O2 supply restores competitive advantage to aerobic populations, resetting the cycle. The resulting ecosystem oscillations induce a unique geochemical signature within the ODZ—short-lived spikes of ammonium that are found in measured profiles. The microbial ecosystem dynamics also give rise to variable ratios of anammox to heterotrophic denitrification, providing a mechanism for the unexplained variability of these pathways observed in the ocean.

Oceanography of Harmful Algal Blooms on the Ecuadorian Coast (1997–2017): Integrating Remote Sensing and Biological Data

Borbor-Cordova MJ, Torres G, Mantilla-Saltos G, Casierra-Tomala A, J. Bermúdez R, Renteria W, Bayot B. Oceanography of Harmful Algal Blooms on the Ecuadorian Coast (1997–2017): Integrating Remote Sensing and Biological Data. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00013/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ocean climate drivers and phytoplankton life strategies interact in a complex dynamic to produce harmful algal blooms (HABs). This study aims to integrate historical biological data collected during “red tide” events along the Ecuadorian coast between 1997 and 2017 in relation to five ocean variables derived from satellite remote sensing data to explain the seasonal drivers of coastal processes associated with HABs dynamics. Seasonality of the occurrence of HABs was assessed in relation to oceanographic variables by applying multiple correspondence analysis (MCA) to the Ecuadorian central coast (Zone 1) and at the outer and inner Gulf of Guayaquil (Zone 2). Sixty-seven HABs events were registered between 1997 and 2017. From a total of 40 species of phytoplankton identified, 28 were identified as non-toxic and the remaining 12 are well known to produce toxins. Dinoflagellates were the taxonomic group most highly associated with potential HABs events along the entire Ecuadorian coast. HABs appear to be constrained by the Humboldt coastal upwelling, high precipitation, and associated coastal runoff, with higher biomass abundance in the Gulf of Guayaquil than in the central coast. Results from the MCA reveal that in the central Ecuadorian coast (oligotrophic system), toxic HABs occurred with low abundance of dinoflagellates, while in the Gulf of Guayaquil (eutrophic system), toxic HABs corresponded to a high abundance of dinoflagellates. In both cases, high values were found for sea surface temperature, precipitation, and irradiance—characteristic of wet seasons or El Niño years. Non-toxic HABs occurred with a high abundance of dinoflagellates, ciliates, and centric diatoms, corresponding to colder waters and low levels of precipitation and irradiance. These findings confirm that dinoflagellates display several strategies that enhance their productive capacity when ocean conditions are warmer, allowing them to produce toxins at high or at low concentrations. Considering that the Gulf of Guayaquil is essential to tourism, the shrimp industry, fisheries, and international shipping, these findings strongly suggest the need to establish an ecosystem health research program to monitor HABs and the development of a preventive policy for tourism and public health in Ecuador.

Marine Heat Waves and the Influence of El Niño off Southeast Queensland, Australia

Heidemann H, Ribbe J. Marine Heat Waves and the Influence of El Niño off Southeast Queensland, Australia. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00056/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In this paper, we investigate the occurrence and spatial variability of marine heat waves (MHWs) off the southeast coast of Queensland, Australia. The focus is on identifying sea surface temperature (SST) variability in two key ecological hotspots located south of the Australian Great Barrier Reef. This coastal region is bordered in the east by the intensification zone of the East Australian Current (EAC). It includes Hervey Bay, which is part of a UNESCO declared marine biosphere and the Southeast Fraser Island Upwelling System. The analysis of remotely sensed SST for the period 1993 to 2016 identifies the largest number of MHW days for Hervey Bay with a mean length of 12 days. The maximum length of 64 days occurred during the austral summer 2005/2006. The years with the largest number of MHW days was found to occur following the El Niño events in 1998, 2010, and 2016. A cross-correlation and Empirical Orthogonal Function analysis identified a significant correlation with a time lag of 7 months between SST anomalies in the Niño 3.4 region and the southeast Queensland coast. 78% of variance in SST anomalies is explained by the first mode of variability. The strength of the relationship with El Niño was spatially variable and the weakest in Hervey Bay. Due to its sheltered location and shallowness, it is argued that local weather patterns and air-sea fluxes influence this area more than the other two regions, where remotely forced changes in oceanic heat advection may have a stronger impact on generating MHWs. Biodiverse coastal shelf ecosystems are already under tremendous pressure due to human activities. This is likely to be compounded by continued climatic change and an increasing number of MHWs. Thus, similar studies are encouraged for other regional shelfs and smaller scale coastal systems.

Challenges and Prospects in Ocean Circulation Models

Fox-Kemper B, Adcroft A, Böning CW, Chassignet EP, Curchitser E, Danabasoglu G, Eden C, England MH, Gerdes R, Greatbatch RJ, et al. Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00065/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

We revisit the challenges and prospects for ocean circulation models following Griffies et al. (2010). Over the past decade, ocean circulation models evolved through improved understanding, numerics, spatial discretization, grid configurations, parameterizations, data assimilation, environmental monitoring, and process-level observations and modeling. Important large scale applications over the last decade are simulations of the Southern Ocean, the Meridional Overturning Circulation and its variability, and regional sea level change. Submesoscale variability is now routinely resolved in process models and permitted in a few global models, and submesoscale effects are parameterized in most global models. The scales where nonhydrostatic effects become important are beginning to be resolved in regional and process models. Coupling to sea ice, ice shelves, and high-resolution atmospheric models has stimulated new ideas and driven improvements in numerics. Observations have provided insight into turbulence and mixing around the globe and its consequences are assessed through perturbed physics models. Relatedly, parameterizations of the mixing and overturning processes in boundary layers and the ocean interior have improved. New diagnostics being used for evaluating models alongside present and novel observations are briefly referenced. The overall goal is summarizing new developments in ocean modeling, including: how new and existing observations can be used, what modeling challenges remain, and how simulations can be used to support observations.

Feeding and respiration by giant barrel sponges across a gradient of food abundance in the Red Sea

Wooster MK, McMurray SE, Pawlik JR, Morán XAG, Berumen ML. Feeding and respiration by giant barrel sponges across a gradient of food abundance in the Red Sea. Limnology and Oceanography [Internet]. 2019 . Available from: https://aslopubs.onlinelibrary.wiley.com/doi/full/10.1002/lno.11151
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

While sponges are well‐known to be suspension feeders, consumption of dissolved organic carbon (DOC) has recently been highlighted as a mechanism whereby sponges may avoid food limitation. Further, the sponge‐loop hypothesis proposes that sponges consume DOC and then release shed cellular detritus back to the reef benthos. We examined the carbon flux mediated by the giant barrel sponge, Xestospongia testudinaria, on reefs in the Red Sea across an inshore–offshore gradient that had previously been proposed to affect sponge nutrition in other parts of the tropics. Seawater samples were collected from the incurrent and excurrent flow of 35 sponges. Concentrations of total organic carbon and its components, DOC, live particulate organic carbon (LPOC), and detritus, were all significantly higher in incurrent seawater on inshore than offshore reefs. The diet of X. testudinaria was comprised primarily of DOC and detritus, with mean values across all reef sites of 61.5% DOC, 34.6% detritus, and 3.9% LPOC. Across the inshore–offshore gradient, there was evidence (1) of a threshold concentration of DOC (≈ 79 μmol C Lseawater−1) below which sponges ceased to be net consumers of DOC, and (2) that sponges on offshore reefs were food limited, with a mean carbon deficit relative to sponges on inshore reef sites. Sponges on offshore reef sites exhibited higher pumping rates, perhaps indicating optimal foraging for POC. As previously demonstrated for Xestospongia muta, and contrary to the sponge‐loop hypothesis, there was no evidence that X. testudinaria returned DOC to the benthos in the form of detritus.

Pages

Subscribe to RSS - Natural Sciences