Natural Sciences

Swim with the tide: Tactics to maximize prey detection by a specialist predator, the greater sea snake (Hydrophis major)

Udyawer V, Goiran C, Chateau O, Shine R. Swim with the tide: Tactics to maximize prey detection by a specialist predator, the greater sea snake (Hydrophis major) Somers CM. PLOS ONE [Internet]. 2020 ;15(10):e0239920. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239920
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The fitness of a predator depends upon its ability to locate and capture prey; and thus, increasing dietary specialization should favor the evolution of species-specific foraging tactics tuned to taxon-specific habitats and cues. Within marine environments, prey detectability (e.g., via visual or chemical cues) is affected by environmental conditions (e.g., water clarity and tidal flow), such that specialist predators would be expected to synchronize their foraging activity with cyclic variation in such conditions. In the present study, we combined behavioral-ecology experiments on captive sea snakes and their prey (catfish) with acoustic tracking of free-ranging sea snakes, to explore the use of waterborne chemical cues in this predator-prey interaction. In coral-reef ecosystems of New Caledonia, the greater sea snake (Hydrophis major) feeds only upon striped eel catfish (Plotosus lineatus). Captive snakes became more active after exposure to waterborne chemical cues from catfish, whereas catfish did not avoid chemical cues from snakes. Movement patterns of tracked snakes showed that individuals were most active on a rapidly falling tide, which is the time when chemical cues from hidden catfish are likely to be most readily available to a foraging predator. By synchronizing foraging effort with the tidal cycle, greater sea snakes may be able to exploit the availability of chemical cues during a rapidly falling tide to maximize efficiency in locating and capturing prey.

Assessing the effectiveness of different sea turtle nest protection strategies against coyotes

Lovemore TEJ, Montero N, Ceriani SA, Fuentes MMPB. Assessing the effectiveness of different sea turtle nest protection strategies against coyotes. Journal of Experimental Marine Biology and Ecology [Internet]. 2020 ;533:151470. Available from: https://www.sciencedirect.com/science/article/pii/S0022098120303051?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Depredation of sea turtle nests, where a nest is either partially or completely predated by a predator, is particularly detrimental to the reproductive output of sea turtles and consequently a concern for sea turtle conservation efforts globally. To minimize depredation of sea turtle nests, several protective strategies have been trialed against different predators. However, although information on their effectiveness exists, information on the effectiveness of strategies aiming to mitigate depredation by coyotes, which is an issue at loggerhead turtle, Caretta caretta, nesting beaches in Florida and globally is inexistent. To inform future management of sea turtle nest depredation by coyotes, this study evaluated the effectiveness of three nest protection strategies (self-releasing metal cage, self-releasing plastic cage, and self-releasing metal screen). Further, to obtain insights into coyote behavior during depredation activities and inform management strategies, we used infrared camera surveillance to monitor sea turtle nests. Self-releasing plastic cages were found to be the most effective strategy at mitigating coyote depredation on loggerhead nests. Our findings provide important information for consideration when developing depredation mitigation strategies in the region and globally.

Plankton Community Changes From Warm to Cold Winters in the Oligotrophic Subtropical Ocean

Armengol L, Franchy G, Ojeda A, Hernández-León S. Plankton Community Changes From Warm to Cold Winters in the Oligotrophic Subtropical Ocean. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00677/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Subtropical gyres are large areas of the ocean characterized by high stratification, low nutrients, and low primary production. The Canary Current System (CanCS) shows a rather strong seasonal thermocline during most of the annual cycle, which erodes through convective mixing from January to March promoting the so-called Late Winter Bloom (LWB). Atmospheric deposition from the Sahara desert is also another key feature of the CanCS providing additional nutrients to the euphotic zone. As a consequence of global warming, these oligotrophic regimes systems are expanding and the temperature increase affects phytoplankton, and reverberate on the food web structure and biogeochemical cycles. In the CanCS, the effect of warming and dust deposition on the planktonic community remains poorly know. Here, we show the effects of a 0.5°C increase in ocean temperature during two consecutive years. During 2011, winter temperature allowed the development of the LWB, promoting the increase of autotrophic cells and the coexistence of the microbial loop and the “classic” trophic web. The former predominated before and after the LWB, while the latter prevailed during the LWB. The rather high temperature during 2010 prevented the LWB development, causing highly oligotrophic conditions and episodic events of Saharan dust contributing to nutrient inputs. During this warm year, we found a dominance of small cells such as nanoflagellates and dinoflagellates, and surprisingly high biomass of mesozooplankton, hinting at the “tunneling effect” as an alternative trophic pathway (rapid uptake of phosphate by prokaryotes which are consumed by flagellates and then by zooplankton). These changes show the impact of a slight increase in temperature in this oligotrophic system and how future scenarios in the context of global warming could promote considerable shifts in the trophic web structure.

Few Herbivore Species Consume Dominant Macroalgae on a Caribbean Coral Reef

Dell CLA, Longo GO, Burkepile DE, Manfrino C. Few Herbivore Species Consume Dominant Macroalgae on a Caribbean Coral Reef. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00676/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coral reefs have changed radically in the last few decades with reefs in the Caribbean now averaging 13% coral cover and 40% macroalgal cover (mostly Dictyota and Lobophora). So, it is time we re-evaluate which species are key to the process of herbivory in these new conditions. The role herbivorous fishes play in controlling macroalgae is often considered by managers and researchers at a guild or family level, but greater resolution is needed to understand the impact of herbivores more fully. We performed feeding assays and behavioral observations of fish feeding to quantify the removal of the most common macroalgae by different herbivorous fish species. In total, we ran 34 h-long trials using Dictyota and Lobophora across two sites and conducted over 34 h of observation of 105 fish from eight species in the Cayman Islands, Caribbean. We show that many nominal herbivores did not consume macroalgae but instead targeted the epibionts on macroalgae and other substrates. In fact, only three fish taxa consumed macroalgae as a significant proportion of their feeding: one species of surgeonfish (Acanthurus coeruleus), one species of parrotfish (Sparisoma aurofrenatum), and the third, the chubs (Kyphosus spp.), is a group of species which is not consistently considered as part of the herbivore community in the Caribbean. From our observations, an individual A. coeruleus can consume ∼44 g of Dictyota per day, while S. aurofrenatum can consume ∼50 g and Kyphosus spp. can consume ∼100 g. These values are significantly more than all other herbivorous fish species and suggest these three taxa are key macroalgal consumers in the Caribbean. These results highlight that disentangling the role of individual herbivore species is necessary for critical species to be identified and protected. Furthermore, as reef conditions change, we need to re-evaluate the key functions and species to be more effective at protecting and managing these important ecosystems. With far higher macroalgal coverage than in the past, the few browsing species that remove macroalgae may be increasingly important in promoting reef health.

Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea

Ding Y, Han M, Wu Z, Zhang R, Li A, Yu K, Wang Y, Huang W, Zheng X, Mai B. Bioaccumulation and trophic transfer of organophosphate esters in tropical marine food web, South China Sea. Environment International [Internet]. 2020 ;143:105919. Available from: https://www.sciencedirect.com/science/article/pii/S0160412020318742
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Environmental exposure to organophosphate esters (OPEs) continues to be a concern. Little is known about their bioaccumulation and trophodynamics, especially in tropical food webs. This study collected seawater and fifteen types of organism from a tropical ecosystem, South China Sea, to investigate the species-specific compositional, bioaccumulation, and trophic transfer of OPEs. The total concentrations of 11 target OPEs (ng/g dw) in the organisms decreased with the increase of their trophic levels in the order: phytoplankton (922) > zooplankton (660) > oysters (309) > crabs (225) > coral tissues (202) > fishes (58.2). The composition profiles (relative abundances) of OPEs were different among the species of organisms, which is likely affected by metabolism and the physicochemical property of OPEs. The trophic biomagnification of tripentyl phosphate (TPTP) in the pelagic food web was unexpected and requires further investigation. The trophic magnification factors (TMFs) of OPEs were generally lower in this tropical aquatic food web than in temperate and frigid aquatic food web. Our analysis suggests that there is a significant positive linear correlation between latitude and TMF. Intakes of OPEs through the consumption of the seafood involved in this work does not pose health risk to adults.

New insights into the hydrogeology and groundwater flow in the Great Barrier Reef catchment, Australia, revealed through 3D modelling

Shishaye HA, Tait DR, Befus KM, Maher DT, Reading MJ. New insights into the hydrogeology and groundwater flow in the Great Barrier Reef catchment, Australia, revealed through 3D modelling. Journal of Hydrology: Regional Studies [Internet]. 2020 ;30:100708. Available from: https://www.sciencedirect.com/science/article/pii/S2214581820301828
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Study region

The Great Barrier Reef catchment is located adjacent to the world's largest coral reef system, the Great Barrier Reef, in eastern Queensland, Australia.

Study focus

This study characterized the geologic and hydrogeologic settings and evaluated the influence of regional faults on groundwater flow. 3D geological models of six regions within the catchment were constructed using drill-log data from >49,000 wells, digital elevation models and surface geological maps. The 3D models were then integrated with potentiometric surface maps and faults data to conceptualize the hydraulic relationships of aquifer units and estimate groundwater development potentials. Potentiometric surfaces and fault orientations were used to conceptualize groundwater flow directions.

New hydrological insights for the region

The 3D geological and hydrogeological characterizations revealed previously unknown faults and aquifer units in the study area. The study found that the central regions consisted of fractured and porous-unconfined aquifers, while confined aquifers, which extend to the coast and likely beyond, were also found in the northern and southern most regions. The orientations of the faults trended in NW-SE directions and could form conduits for south-easterly groundwater flow as opposed to the predominate easterly flow in the porous-unconfined and confined aquifers. The 3D models, aquifer connectivities and geometries provided crucial information to determine groundwater development potentials and offer a first step in developing local and regional groundwater flow and contaminant transport models.

Understanding Environmental Changes in Temperate Coastal Seas: Linking Models of Benthic Fauna to Carbon and Nutrient Fluxes

Ehrnsten E, Sun X, Humborg C, Norkko A, Savchuk OP, Slomp CP, Timmermann K, Gustafsson BG. Understanding Environmental Changes in Temperate Coastal Seas: Linking Models of Benthic Fauna to Carbon and Nutrient Fluxes. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00450/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1361476_45_Marine_20200625_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Coastal seas are highly productive systems, providing an array of ecosystem services to humankind, such as processing of nutrient effluents from land and climate regulation. However, coastal ecosystems are threatened by human-induced pressures such as climate change and eutrophication. In the coastal zone, the fluxes and transformations of nutrients and carbon sustaining coastal ecosystem functions and services are strongly regulated by benthic biological and chemical processes. Thus, to understand and quantify how coastal ecosystems respond to environmental change, mechanistic modeling of benthic biogeochemical processes is required. Here, we discuss the present model capabilities to quantitatively describe how benthic fauna drives nutrient and carbon processing in the coastal zone. There are a multitude of modeling approaches of different complexity, but a thorough mechanistic description of benthic-pelagic processes is still hampered by a fundamental lack of scientific understanding of the diverse interactions between the physical, chemical and biological processes that drive biogeochemical fluxes in the coastal zone. Especially shallow systems with long water residence times are sensitive to the activities of benthic organisms. Hence, including and improving the description of benthic biomass and metabolism in sediment diagenetic as well as ecosystem models for such systems is essential to increase our understanding of their response to environmental changes and the role of coastal sediments in nutrient and carbon cycling. Major challenges and research priorities are (1) to couple the dynamics of zoobenthic biomass and metabolism to sediment reactive-transport in models, (2) to test and validate model formulations against real-world data to better incorporate the context-dependency of processes in heterogeneous coastal areas in models and (3) to capture the role of stochastic events.

Advances in Observing and Understanding Small-Scale Open Ocean Circulation During the Gulf of Mexico Research Initiative Era

D'Asaro EA, Carlson DF, Chamecki M, Harcourt RR, Haus BK, Fox-Kemper B, M. Molemaker J, Poje AC, Yang D. Advances in Observing and Understanding Small-Scale Open Ocean Circulation During the Gulf of Mexico Research Initiative Era. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00349/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Predicting the distribution of oil, buoyant plastics, flotsam, and marine organisms near the ocean surface remains a fundamental problem of practical importance. This manuscript synthesizes progress in this area during the time of the Gulf of Mexico Research Initiative (GoMRI; 2012–2019), with an emphasis on the accumulation of floating material into highly concentrated streaks on horizontal scales of meters to 10's of kilometers. Prior to the GoMRI period, two new paradigms emerged: the importance of submesoscale frontal dynamics on the larger scales and of surface-wave-driven Langmuir turbulence on the smaller scales, with a broad transition occurring near 100 m. Rapid progress resulted from the combination of high resolution numerical modeling tools, mostly developed before GoMRI, and new observational techniques developed during GoMRI. Massive deployments of inexpensive and biodegradable satellite-tracked surface drifters combined with aerial tracking of oil surrogates (drift cards) enabled simultaneous observations of surface ocean velocities and dispersion over scales of 10 m to 10's of kilometers. Surface current maps produced by ship-mounted radar and aerial optical remote sensing systems, combined with traditional oceanographic tools, enabled a set of coordinated measurement programs that supported and expanded the new paradigms. Submesoscale fronts caused floating material to both accumulate at fronts and to disperse as they evolved, leading to higher local concentrations, but increased overall dispersion. Analyses confirmed the distinct submesoscale dynamics of this process and the complexity of the resulting fields. Existing tools could be developed into predictive models of submesoscale statistics, but prediction of individual submesoscale features will likely remain limited by data. Away from fronts, measured rates of accumulation of material in and beneath surface windrows was found to be consistent with Langmuir turbulence, but highly dependent on the rise rate of the material and thus, for oil, on the droplet size. Models of this process were developed and tested and could be further developed into predictive tools. Both the submesoscale and Langmuir processes are sensitive to coupling with surface waves and air-sea flux processes. This sensitivity is a promising area for future studies.

Life Cycle Dynamics of a Key Marine Species Under Multiple Stressors

Otto SA, Niiranen S, Blenckner T, Tomczak MT, Müller-Karulis B, Rubene G, Möllmann C. Life Cycle Dynamics of a Key Marine Species Under Multiple Stressors. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00296/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1334659_45_Marine_20200521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Identifying key indicator species, their life cycle dynamics and the multiple driving forces they are affected by is an important step in ecosystem-based management. Similarly important is understanding how environmental changes and trophic interactions shape future trajectories of key species with potential implications for ecosystem state and service provision. We here present a statistical modeling framework to assess and quantify cumulative effects on the long-term dynamics of the copepod Pseudocalanus acuspes, a key species in the Baltic Sea. Our model integrates linear and non-linear responses to changes in life stage density, climate and predation pressure as well as stochastic processes. We use the integrated life cycle model to simulate copepod dynamics under a combination of stressor scenarios and to identify conditions under which population responses are potentially mitigated or magnified. Our novel modeling approach reliably captures the historical P. acuspes population dynamics and allows us to identify females in spring and younger copepodites in summer as stages most sensitive to direct and indirect effects of the main environmental stressors, salinity and temperature. Our model simulations furthermore demonstrate that population responses to stressors are dampened through density effects. Multiple stressor interactions were mostly additive except when acting on the same life stage. Here, negative synergistic and positive dampening effects lead to a lower total population size than expected under additive interactions. As a consequence, we found that a favorable increase of oxygen and phosphate conditions together with a reduction in predation pressure by 50% each could counteract the negative effect of a 25% decrease in salinity by only 6%. Ultimately, our simulations suggest that P. acuspes will most certainly decline under a potential freshening of the Baltic Sea and increasing temperatures, which is conditional on the extent of the assumed climate change. Also the planned nutrient reduction strategy and fishery management plan will not necessarily benefit the temporal development of P. acuspes. Moving forward, there is a growing opportunity for using population modeling in cumulative effects assessments. Our modeling framework can help here as simple tool for species with a discrete life cycle to explore stressor interactions and the safe operating space under future climate change.

Causes of Mortality in a Harbor Seal (Phoca vitulina) Population at Equilibrium

Ashley EA, Olson JK, Adler TE, Raverty S, Anderson EM, Jeffries S, Gaydos JK. Causes of Mortality in a Harbor Seal (Phoca vitulina) Population at Equilibrium. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00319/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1334659_45_Marine_20200521_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The harbor seal (Phoca vitulina richardii) population in the Salish Sea has been at equilibrium since the mid-1990s. This stable population of marine mammals resides relatively close to shore near a large human population and offers a novel opportunity to evaluate whether disease acts in a density-dependent manner to limit population growth. We conducted a retrospective analysis of harbor seal stranding and necropsy findings in the San Juan Islands sub-population to assess age-related stranding trends and causes of mortality. Between January 01, 2002 and December 31, 2018, we detected 882 harbor seals that stranded and died in San Juan County and conducted necropsies on 244 of these animals to determine primary and contributing causes of death. Age-related seasonal patterns of stranded animals were evident, with pups found in the summer, weaned pups primarily recovered during fall, and adults and sub-adults recovered in summer and fall. Pups were the most vulnerable to mortality (64% of strandings). Pups predominantly died of nutritional causes (emaciation) (70%), whereas sub-adults and adults presented primarily with clinical signs and gross lesions of infectious disease (42%) and with non-anthropogenic trauma (27%). Primary causes of weaned pup mortality were distributed equally among nutritional, infectious, non-anthropogenic trauma, and anthropogenic trauma categories. Nutritional causes of mortality in pups were likely related to limitations in mid- and late-gestational maternal nutrition, post-partum mismothering, or maternal separation possibly related to human disturbance. Infectious causes were contributing factors in 33% of pups dying of nutritional causes (primarily emaciation–malnutrition syndrome), suggesting an interaction between poor nutritional condition and enhanced susceptibility to infectious diseases. Additional primary causes of harbor seal mortality were related to congenital disorders, predation, human interaction, and infections, including zoonotic and multidrug-resistant pathogens. Bottom-up nutritional limitations for pups, in part possibly related to human disturbance, as well as top-down predatory influences (likely under-represented through strandings) and infectious disease, are important regulators of population growth in this stable, recovered marine mammal population.

Pages

Subscribe to RSS - Natural Sciences