Pollution and Marine Debris

Boops boops as a bioindicator of microplastic pollution along the Spanish Catalan coast

Garcia-Garin O, Vighi M, Aguilar A, Tsangaris C, Digka N, Kaberi H, Borrell A. Boops boops as a bioindicator of microplastic pollution along the Spanish Catalan coast. Marine Pollution Bulletin [Internet]. 2019 ;149:110648. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0025326X19307969?dgcid=raven_sd_search_email
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Microplastic pollution is a growing cause of concern for the marine environment, particularly in the Mediterranean Sea, which is considered to be one of the most polluted seas worldwide. In this study, the gastrointestinal tracts of 102 bogues (Boops boops), sampled from three areas off the Catalan coast (Spain) subject to different degrees of industrialization, were analysed to assess microplastic ingestion and thus estimate local levels of microplastic pollution. Microplastics were detected in 46% of samples analysed. As expected, the abundance and frequency of occurrence of ingested microplastics were higher off the most anthropized area of Barcelona. The majority of ingested microplastics were blue fragments ranging 0.1–0.5 mm, and the most common polymer type was polypropylene. The results of this study indicate the area off Barcelona as a possible area of concentration for microplastics, further supporting the use of B. boops as a bioindicator to assess microplastic pollution.

Global review of beach debris monitoring and future recommendations

Serra-Gonçalves C, Lavers JL, Bond AL. Global review of beach debris monitoring and future recommendations. Environmental Science & Technology [Internet]. 2019 . Available from: https://pubs.acs.org/doi/abs/10.1021/acs.est.9b01424
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $40.00
Type: Journal Article

Marine debris is distributed worldwide and constitutes an increasing threat to our environment. The exponential increase of plastic debris raises numerous concerns and has led to an intensification in plastic monitoring and research. However, global spatial and temporal patterns and knowledge gaps in debris distribution, both on land and at sea, are relatively poorly understood, mainly due to a lack of comprehensive datasets. Here we critically review the quality of the available information on beach plastic debris worldwide to highlight where the most urgent actions are required, and to promote the standardization of reporting metrics and sampling methods among researchers. From a total of 174 studies evaluated, 27.0% reported marine debris densities in metrics that were not comparable. Some studies failed to report basic parameters, such as the date of the sampling (9.8%) or the size of the collected debris (19.5%). Our findings show that current research regarding beach debris requires significant improvement and standardization and would benefit from the adoption of a common reporting framework to promote consensus within the scientific community.

Quarterly variability of floating plastic debris in the marine protected area of the Menorca Channel (Spain)

Ruiz-Orejón LF, Mourre B, Sardà R, Tintoré J, Ramis-Pujol J. Quarterly variability of floating plastic debris in the marine protected area of the Menorca Channel (Spain). Environmental Pollution [Internet]. 2019 ;252:1742 - 1754. Available from: https://www.sciencedirect.com/science/article/pii/S026974911931156X
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

Plastic pollution is widespread in all the oceans and seas, representing a significant threat to most of their ecosystems even in marine protected areas (MPAs). This study determines the floating plastic distribution in four different periods between 2014 and 2015 in the recently approved Menorca Channel MPA (Balearic Islands). Plastic debris were persistent during all sampling periods on the surface of the Channel, composed mainly by the microplastic sizes. Average particle abundances ranged from 138,293 items⋅km−2 in autumn to 347,793 items⋅km−2 during the spring, while weight densities varied from 458.15 g(DW)⋅km−2 in winter to 2016.67 g(DW)⋅km−2 in summer. Rigid plastics were the most frequent particles in all the periods analysed (from 89.40%-winter to 94.54%-spring). The high-resolution and particle distribution models corroborated that the oceanographic variability shapes different patterns of presence of plastics, and in particular the existence of areas with almost no plastics.

Rapid increase in Asian bottles in the South Atlantic Ocean indicates major debris inputs from ships

Ryan PG, Dilley BJ, Ronconi RA, Connan M. Rapid increase in Asian bottles in the South Atlantic Ocean indicates major debris inputs from ships. Proceedings of the National Academy of Sciences [Internet]. 2019 :201909816. Available from: https://www.pnas.org/content/early/2019/09/24/1909816116
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $10.00
Type: Journal Article

Most plastic debris floating at sea is thought to come from land-based sources, but there is little direct evidence to support this assumption. Since 1984, stranded debris has been recorded along the west coast of Inaccessible Island, a remote, uninhabited island in the central South Atlantic Ocean that has a very high macrodebris load (∼5 kg·m−1). Plastic drink bottles show the fastest growth rate, increasing at 15% per year compared with 7% per year for other debris types. In 2018, we examined 2,580 plastic bottles and other containers (one-third of all debris items) that had accumulated on the coast, and a further 174 bottles that washed ashore during regular monitoring over the course of 72 d (equivalent to 800 bottles·km−1·y−1). The oldest container was a high-density polyethylene canister made in 1971, but most were polyethylene terephthalate drink bottles of recent manufacture. Of the bottles that washed up during our survey, 90% were date-stamped within 2 y of stranding. In the 1980s, two-thirds of bottles derived from South America, carried 3,000 km by the west wind drift. By 2009, Asia had surpassed South America as the major source of bottles, and by 2018, Asian bottles comprised 73% of accumulated and 83% of newly arrived bottles, with most made in China. The rapid growth in Asian debris, mainly from China, coupled with the recent manufacture of these items, indicates that ships are responsible for most of the bottles floating in the central South Atlantic Ocean, in contravention of International Convention for the Prevention of Pollution from Ships regulations.

Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea

Hernandez LM, Xu EGenbo, Larsson HCE, Tahara R, Maisuria VB, Tufenkji N. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea. Environmental Science & Technology [Internet]. 2019 . Available from: https://pubs.acs.org/doi/full/10.1021/acs.est.9b02540
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $10.00
Type: Journal Article

The increasing presence of micro- and nano-sized plastics in the environment and food chain is of growing concern. Although mindful consumers are promoting the reduction of single-use plastics, some manufacturers are creating new plastic packaging to replace traditional paper uses, such as plastic teabags. The objective of this study was to determine whether plastic teabags could release microplastics and/or nanoplastics during a typical steeping process. We show that steeping a single plastic teabag at brewing temperature (95 °C) releases approximately 11.6 billion microplastics and 3.1 billion nanoplastics into a single cup of the beverage. The composition of the released particles is matched to the original teabags (nylon and polyethylene terephthalate) using Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The levels of nylon and polyethylene terephthalate particles released from the teabag packaging are several orders of magnitude higher than plastic loads previously reported in other foods. An initial acute invertebrate toxicity assessment shows that exposure to only the particles released from the teabags caused dose-dependent behavioral and developmental effects.

Eliminating Plastic Pollution: How a Voluntary Contribution From Industry Will Drive the Circular Plastics Economy

Forrest A, Giacovazzi L, Dunlop S, Reisser J, Tickler D, Jamieson A, Meeuwig JJ. Eliminating Plastic Pollution: How a Voluntary Contribution From Industry Will Drive the Circular Plastics Economy. Frontiers in Marine Science [Internet]. 2019 ;6. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2019.00627/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine plastic pollution is a symptom of an inherently wasteful linear plastic economy, costing us more than US$ 2.2 trillion per year. Of the 6.3 billion tonnes of fossil fuel-derived plastic (FFP) waste produced to date, only 9% has been recycled; the rest being incinerated (12%) or dumped into the environment (79%). FFPs take centuries to degrade, meaning five billion tonnes of increasingly fragmented and dangerous plastics have accumulated in our oceans, soil and air. Rates of FFP production and waste are growing rapidly, driven by increased demand and shifting strategies of oil and gas companies responding to slowing profit growth. Without effective recycling, the harm caused by FFP waste will keep increasing, jeopardizing first marine life and ultimately humankind. In this Perspective article, we review the global costs of plastic pollution and explain why solving this is imperative for humanity's well-being. We show that FFP pollution is far beyond a marine environmental issue: it now invades our bodies, causing disease and dysfunction, while millions of adults and children work in conditions akin to slavery, picking through our waste. We argue that an integrated economic and technical solution, catalyzed through a voluntary industry-led contribution from new FFP production, is central to arrest plastic waste flows by making used plastic a cashable commodity, incentivizing recovery and accelerating industrialization of polymer-to-polymer technologies. Without much-needed systematic transformation, driven by a contribution from FFP production, humanity and the oceans face a troubling future.

Impacts of microplastic vs. natural abiotic particles on the clearance rate of a marine mussel

Harris LST, Carrington E. Impacts of microplastic vs. natural abiotic particles on the clearance rate of a marine mussel. Limnology and Oceanography Letters [Internet]. 2019 . Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/lol2.10120
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In coastal habitats, mussels are exposed to microplastics (MP; plastic 0.1μm–5 mm) and silt, two abiotic particlesthat are similarly sized and lack nutrition. The addition of MP or silt may change the functional response ofmussels. We measured clearance rate (CR) ofMytilus trossulusin three particle treatments (algae, MP + algae, andsilt + algae) across four concentrations to (1) determine if the effects of MP and silt are similar and (2) disentanglethe effects of particle type, particle concentration, and proportion of abiotic particles. CR decreased by 62%at high MP concentrations (> 1250 particles mL−1) but was not affected at equivalent silt concentrations. Thesefindings suggest high MP concentrations inhibit mussel CR, more than expected by changes in particle concen-tration or the proportion of abiotic particles. As plastic production increases, mussel exposure to MP will increase,potentially reducing energy transfer, benthic-pelagic coupling, and water clarity.

Selenium in buoyant marine debris biofilm

Mitchell K, Lima ATeresa, Van Cappellen P. Selenium in buoyant marine debris biofilm. Marine Pollution Bulletin [Internet]. 2019 ;149:110562. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0025326X19307064?via%3Dihub
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Marine debris is widespread in all the world's oceans. Currently little is understood about how marine debris affects the chemistry of the surface oceans, particularly trace elements that can adsorb to the surface of marine debris, especially plastic debris, or be taken up by biofilms and algae growing on the surface of marine debris. Selenium (Se) is a micronutrient that is essential to all living organisms. Average seawater Se concentrations in the modern ocean are <1 nM. Here we measure the concentration of Se in surface water and one deep water sample and the concentration of Se found in algae/biofilms growing on the surface of macro-debris collected in October of 2012. Concentrations of Se in biofilm varied more according to the type of biofilm rather than the type of plastic. However, further Se measurements are needed for more conclusive results.

Can the Global Problem of Marine Litter Be Considered a Crisis?

Mæland CE, Staupe‐Delgado R. Can the Global Problem of Marine Litter Be Considered a Crisis?. Risk, Hazards & Crisis in Public Policy [Internet]. 2019 . Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/rhc3.12180
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $42.00
Type: Journal Article

Marine plastic litter and microplastics pollution is a global governance problem with unknown and potentially dire consequences. Efforts to promote individual‐centered solutions to the problem are increasingly necessary but are insufficient to tackle the root causes of the problem. Therefore, a concerted policy response at the global level is imperative. The success of such efforts necessarily depends on the way in which the problem is framed and understood, including its degree of urgency. This paper engages with this problem by considering the nature of the issue in light of the crisis term and argues that the global problem of marine litter may be more productively considered a “creeping crisis” given the complexity, scope, and spatio‐temporally fragmented nature of the problem.

Offshore surface waters of Antarctica are free of microplastics, as revealed by a circum-Antarctic study

Kuklinski P, Wicikowski L, Koper M, Grala T, Leniec-Koper H, Barasiński M, Talar M, Kamiński I, Kibart R, Małecki W. Offshore surface waters of Antarctica are free of microplastics, as revealed by a circum-Antarctic study. Marine Pollution Bulletin [Internet]. 2019 ;149:110573. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0025326X19307180?dgcid=raven_sd_search_email
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

In 2018, during a circumnavigation of Antarctica below 62° S by the sailing boat Katharsis II, the presence of plastics was investigated with surface sampling nets at ten evenly spaced locations (every 36° of longitude). Although fibres that appeared to be plastic (particles up to 2 cm) were found in numbers ranging from 1 particle (0.002 particles per m3) to 171 particles (1.366 particles per m3) per station, a Fourier-transform infrared spectroscopy (FT-IR) analysis indicated that these particles were not composed of plastic. The fibres which superficially reminded plastic were composed of silica and are of biological origin most likely generated by phytoplankton (diatoms). Therefore, the offshore Antarctic locations were proven to be free of floating microplastics.

Pages

Subscribe to RSS - Pollution and Marine Debris