Pollution and Marine Debris

Contaminants of emerging concern in a large temperate estuary

Meador JP, Yeh A, Young G, Gallagher EP. Contaminants of emerging concern in a large temperate estuary. Environmental Pollution [Internet]. 2016 ;213:254 - 267. Available from: http://www.sciencedirect.com/science/article/pii/S0269749116300884
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

This study was designed to assess the occurrence and concentrations of a broad range of contaminants of emerging concern (CECs) from three local estuaries within a large estuarine ecosystem. In addition to effluent from two wastewater treatment plants (WWTP), we sampled water and whole-body juvenile Chinook salmon (Oncorhynchus tshawytscha) and Pacific staghorn sculpin (Leptocottus armatus) in estuaries receiving effluent. We analyzed these matrices for 150 compounds, which included pharmaceuticals, personal care products (PPCPs), and several industrial compounds. Collectively, we detected 81 analytes in effluent, 25 analytes in estuary water, and 42 analytes in fish tissue. A number of compounds, including sertraline, triclosan, estrone, fluoxetine, metformin, and nonylphenol were detected in water and tissue at concentrations that may cause adverse effects in fish. Interestingly, 29 CEC analytes were detected in effluent and fish tissue, but not in estuarine waters, indicating a high potential for bioaccumulation for these compounds. Although concentrations of most detected analytes were present at relatively low concentrations, our analysis revealed that overall CEC inputs to each estuary amount to several kilograms of these compounds per day. This study is unique because we report on CEC concentrations in estuarine waters and whole-body fish, which are both uncommon in the literature. A noteworthy finding was the preferential bioaccumulation of CECs in free-ranging juvenile Chinook salmon relative to staghorn sculpin, a benthic species with relatively high site fidelity.

Oyster reproduction is affected by exposure to polystyrene microplastics

Sussarellu R, Suquet M, Thomas Y, Lambert C, Fabioux C, Pernet MEve Julie, Le Goïc N, Quillien V, Mingant C, Epelboin Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics. Proceedings of the National Academy of Sciences [Internet]. 2016 . Available from: http://www.pnas.org/content/early/2016/01/25/1519019113.abstract.html?etoc
Freely available?: 
No
Summary available?: 
Yes
Type: Journal Article

Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L−1) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (−38%), diameter (−5%), and sperm velocity (−23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.

Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife

Wilcox C, Mallos NJ, Leonard GH, Rodriguez A, Hardesty BDenise. Using expert elicitation to estimate the impacts of plastic pollution on marine wildlife. Marine Policy [Internet]. 2016 ;65:107 - 114. Available from: http://www.sciencedirect.com/science/article/pii/S0308597X15002985
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine litter is a growing environmental concern. With the rapid increase in global plastics production and the resulting large volume of litter that enters the marine environment, determining the consequences of this debris on marine fauna and ocean health has now become a critical environmental priority, particularly for threatened and endangered species. However, there are limited data about the impacts of debris on marine species from which to draw conclusions about the population consequences of anthropogenic debris. To address this knowledge gap, information was elicited from experts on the ecological threat (both severity and specificity) of entanglement, ingestion and chemical contamination for three major marine taxa: seabirds, sea turtles and marine mammals. The threat assessment focused on the most common types of litter that are found along the world's coastlines, based on data gathered during three decades of international coastal clean-up efforts. Fishing related gear, balloons and plastic bags were estimated to pose the greatest entanglement risk to marine fauna. In contrast, experts identified a broader suite of items of concern for ingestion, with plastic bags and plastic utensils ranked as the greatest threats. Entanglement and ingestion affected a similar range of taxa, although entanglement was rated as slightly worse because it is more likely to be lethal. Contamination was scored the lowest in terms of impact, affecting a smaller portion of the taxa and being rated as having solely non-lethal impacts. This work points towards a number of opportunities both for policy-based and consumer-driven changes in plastics use that could have demonstrable affects for a range of ecologically important taxa that serve as indicators of marine ecosystem health.

Deepwater Horizon oil spill impacts on sea turtles could span the Atlantic

Putman NF, F. Abreu-Grobois A, Iturbe-Darkistade I, Putman EM, Richards PM, Verley P. Deepwater Horizon oil spill impacts on sea turtles could span the Atlantic. Biology Letters [Internet]. 2015 ;11(12). Available from: http://rsbl.royalsocietypublishing.org/content/11/12/20150596.abstract
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

We investigated the extent that the 2010 Deepwater Horizon oil spill potentially affected oceanic-stage sea turtles from populations across the Atlantic. Within an ocean-circulation model, particles were backtracked from the Gulf of Mexico spill site to determine the probability of young turtles arriving in this area from major nesting beaches. The abundance of turtles in the vicinity of the oil spill was derived by forward-tracking particles from focal beaches and integrating population size, oceanic-stage duration and stage-specific survival rates. Simulations indicated that 321 401 (66 199–397 864) green (Chelonia mydas), loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) turtles were likely within the spill site. These predictions compared favourably with estimates from in-water observations recently made available to the public (though our initial predictions for Kemp's ridley were substantially lower than in-water estimates, better agreement was obtained with modifications to mimic behaviour of young Kemp's ridley turtles in the northern Gulf). Simulations predicted 75.2% (71.9–76.3%) of turtles came from Mexico, 14.8% (11–18%) from Costa Rica, 5.9% (4.8–7.9%) from countries in northern South America, 3.4% (2.4–3.5%) from the United States and 1.6% (0.6–2.0%) from West African countries. Thus, the spill's impacts may extend far beyond the current focus on the northern Gulf of Mexico.

Mediterranean marine biodiversity under threat: Reviewing influence of marine litter on species

Deudero S, Alomar C. Mediterranean marine biodiversity under threat: Reviewing influence of marine litter on species. Marine Pollution Bulletin [Internet]. 2015 ;98(1-2):58 - 68. Available from: http://www.sciencedirect.com/science/article/pii/S0025326X15004324
Freely available?: 
No
Summary available?: 
Yes
Type: Journal Article

The Mediterranean Sea is one of the most polluted seas worldwide, especially with regard to plastics. The presence of this emerging man made contaminant in marine environments precludes large effects and interactions with species exposed to massive litter quantities. In this review, available data of floating and seafloor litter around Mediterranean sub-basins are reported. A review of scientific literature on the interaction of plastic with marine biota resulted in the identification of 134 species, several taxa and feeding strategies affected from 1986 to 2014. Data from 17,334 individuals showed different levels of ingestion and effects on catalogued IUCN species (marine mammals and sea turtles) in addition to several pelagic fish and elasmobranchs. Biodiversity is certainly under threat, and knowledge of the extent of taxa affected is of concern considering the increasing plastic loads in the Mediterranean Sea and worldwide.

Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy

Collard F, Gilbert B, Eppe G, Parmentier E, Das K. Detection of Anthropogenic Particles in Fish Stomachs: An Isolation Method Adapted to Identification by Raman Spectroscopy. Archives of Environmental Contamination and Toxicology [Internet]. 2015 ;69(3):331 - 339. Available from: http://link.springer.com/article/10.1007/s00244-015-0221-0
Freely available?: 
No
Summary available?: 
Yes
Type: Journal Article

Microplastic particles (MP) contaminate oceans and affect marine organisms in several ways. Ingestion combined with food intake is generally reported. However, data interpretation often is circumvented by the difficulty to separate MP from bulk samples. Visual examination often is used as one or the only step to sort these particles. However, color, size, and shape are insufficient and often unreliable criteria. We present an extraction method based on hypochlorite digestion and isolation of MP from the membrane by sonication. The protocol is especially well adapted to a subsequent analysis by Raman spectroscopy. The method avoids fluorescence problems, allowing better identification of anthropogenic particles (AP) from stomach contents of fish by Raman spectroscopy. It was developed with commercial samples of microplastics and cotton along with stomach contents from three different Clupeiformes fishes: Clupea harengusSardina pilchardus, and Engraulis encrasicolus. The optimized digestion and isolation protocol showed no visible impact on microplastics and cotton particles while the Raman spectroscopic spectrum allowed the precise identification of microplastics and textile fibers. Thirty-five particles were isolated from nine fish stomach contents. Raman analysis has confirmed 11 microplastics and 13 fibers mainly made of cellulose or lignin. Some particles were not completely identified but contained artificial dyes. The novel approach developed in this manuscript should help to assess the presence, quantity, and composition of AP in planktivorous fish stomachs.

Stemming the Tide: Land-based strategies for a plastic-free ocean

Anon. Stemming the Tide: Land-based strategies for a plastic-free ocean. Ocean Conservancy; 2015. Available from: http://www.oceanconservancy.org/our-work/marine-debris/stop-plastic-trash-2015.html
Freely available?: 
Yes
Summary available?: 
No
Type: Report

Increasing clarity about plastic-waste leakage volumes and the waste’s effects on the ecosystem, as well as new information about solution economics and action levers—together with emerging private-sector, government, and multilateral support—makes this a good time to elevate the agenda for reducing leakage from the global plastic value chain.

This study outlines a path that can generate considerable benefits to communities, preserve the bioproductivity of the ocean, and reduce risks for industry. It shows that, over the next ten years, concerted action in the form of a $5 billion annual ramp-up in waste-management spending could create a vibrant secondary resource market, trigger investment in packaging and recovery systems, and let the ocean thrive. The drivers of the ocean plastic-reduction agenda should convene and jointly define the architecture of such a global program, the actors who should be involved, and the funds required to drive a flagship initiative that stands for a new, collaborative, and effective way of addressing this global challenge. 

Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands

Downs CA, Kramarsky-Winter E, Segal R, Fauth J, Knutson S, Bronstein O, Ciner FR, Jeger R, Lichtenfeld Y, Woodley CM, et al. Toxicopathological Effects of the Sunscreen UV Filter, Oxybenzone (Benzophenone-3), on Coral Planulae and Cultured Primary Cells and Its Environmental Contamination in Hawaii and the U.S. Virgin Islands. Archives of Environmental Contamination and Toxicology [Internet]. 2015 . Available from: http://link.springer.com/article/10.1007/s00244-015-0227-7
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

Benzophenone-3 (BP-3; oxybenzone) is an ingredient in sunscreen lotions and personal-care products that protects against the damaging effects of ultraviolet light. Oxybenzone is an emerging contaminant of concern in marine environments—produced by swimmers and municipal, residential, and boat/ship wastewater discharges. We examined the effects of oxybenzone on the larval form (planula) of the coral Stylophora pistillata, as well as its toxicity in vitro to coral cells from this and six other coral species. Oxybenzone is a photo-toxicant; adverse effects are exacerbated in the light. Whether in darkness or light, oxybenzone transformed planulae from a motile state to a deformed, sessile condition. Planulae exhibited an increasing rate of coral bleaching in response to increasing concentrations of oxybenzone. Oxybenzone is a genotoxicant to corals, exhibiting a positive relationship between DNA-AP lesions and increasing oxybenzone concentrations. Oxybenzone is a skeletal endocrine disruptor; it induced ossification of the planula, encasing the entire planula in its own skeleton. The LC50 of planulae exposed to oxybenzone in the light for an 8- and 24-h exposure was 3.1 mg/L and 139 µg/L, respectively. The LC50s for oxybenzone in darkness for the same time points were 16.8 mg/L and 779 µg/L. Deformity EC20 levels (24 h) of planulae exposed to oxybenzone were 6.5 µg/L in the light and 10 µg/L in darkness. Coral cell LC50s (4 h, in the light) for 7 different coral species ranges from 8 to 340 µg/L, whereas LC20s (4 h, in the light) for the same species ranges from 0.062 to 8 µg/L. Coral reef contamination of oxybenzone in the U.S. Virgin Islands ranged from 75 µg/L to 1.4 mg/L, whereas Hawaiian sites were contaminated between 0.8 and 19.2 µg/L. Oxybenzone poses a hazard to coral reef conservation and threatens the resiliency of coral reefs to climate change.

Plastic and marine turtles: a review and call for research

Nelms SE, Duncan EM, Broderick AC, Galloway TS, Godfrey MH, Hamann M, Lindeque PK, Godley BJ. Plastic and marine turtles: a review and call for research. ICES Journal of Marine Science [Internet]. 2015 :fsv165. Available from: http://icesjms.oxfordjournals.org/content/early/2015/09/26/icesjms.fsv165.abstract
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Plastic debris is now ubiquitous in the marine environment affecting a wide range of taxa, from microscopic zooplankton to large vertebrates. Its persistence and dispersal throughout marine ecosystems has meant that sensitivity toward the scale of threat is growing, particularly for species of conservation concern, such as marine turtles. Their use of a variety of habitats, migratory behaviour, and complex life histories leave them subject to a host of anthropogenic stressors, including exposure to marine plastic pollution. Here, we review the evidence for the effects of plastic debris on turtles and their habitats, highlight knowledge gaps, and make recommendations for future research. We found that, of the seven species, all are known to ingest or become entangled in marine debris. Ingestion can cause intestinal blockage and internal injury, dietary dilution, malnutrition, and increased buoyancy which in turn can result in poor health, reduced growth rates and reproductive output, or death. Entanglement in plastic debris (including ghost fishing gear) is known to cause lacerations, increased drag—which reduces the ability to forage effectively or escape threats—and may lead to drowning or death by starvation. In addition, plastic pollution may impact key turtle habitats. In particular, its presence on nesting beaches may alter nest properties by affecting temperature and sediment permeability. This could influence hatchling sex ratios and reproductive success, resulting in population level implications. Additionally, beach litter may entangle nesting females or emerging hatchlings. Lastly, as an omnipresent and widespread pollutant, plastic debris may cause wider ecosystem effects which result in loss of productivity and implications for trophic interactions. By compiling and presenting this evidence, we demonstrate that urgent action is required to better understand this issue and its effects on marine turtles, so that appropriate and effective mitigation policies can be developed.

Temporal and spatial trends of PCBs, DDTs, HCHs, and HCB in Swedish marine biota 1969–2012

Nyberg E, Faxneld S, Danielsson S, Eriksson U, Miller A, Bignert A. Temporal and spatial trends of PCBs, DDTs, HCHs, and HCB in Swedish marine biota 1969–2012. Ambio [Internet]. 2015 ;44(S3):484 - 497. Available from: http://link.springer.com/article/10.1007%2Fs13280-015-0673-5
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In the 1960s, the Baltic Sea was severely polluted by organic contaminants such as PCBs, HCHs, HCB, and DDTs. Elevated concentrations caused severe adverse effects in Baltic biota. Since then, these substances have been monitored temporally and spatially in Baltic biota, primarily in herring (Clupea harengus) and in guillemot (Uria aalge) egg, but also in cod (Gadus morhua), perch (Perca fluviatilis), eelpout (Zoarces viviparous), and blue mussel (Mytilus edulis). These chemicals were banned in Sweden in the late 1970s/early 1980s. Since the start of monitoring, overall significant decreases of about 70–90 % have been observed. However, concentrations are still higher in the Baltic Sea than in, for example, the North Sea. CB-118 and DDE exceed the suggested target concentrations (24 µg kg−1 lipid weight and 5 µg kg−1 wet weight, respectively) at certain sites in some of the monitored species, showing that concentrations may still be too high to protect the most sensitive organisms.

Pages

Subscribe to RSS - Pollution and Marine Debris