Pollution and Marine Debris

Ocean plastic crisis—Mental models of plastic pollution from remote Indonesian coastal communities

Phelan A(Anya), Ross H, Setianto NAndri, Fielding K, Pradipta L. Ocean plastic crisis—Mental models of plastic pollution from remote Indonesian coastal communities Borrelle SBelle. PLOS ONE [Internet]. 2020 ;15(7):e0236149. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236149
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The crisis facing the world’s oceans from plastics is well documented, yet there is little knowledge of the perspectives, experiences and options of the coastal communities facing overwhelming quantities of plastics on their beaches and in their fishing waters. In emerging economies such as those in the Coral Triangle, the communities affected are among the poorest of their countries. To understand the consequences of ocean plastic pollution in coastal regions, through the eyes of local people, this study examines the knowledge, use, disposal and local consequences of single use plastics in remote island communities in two archipelagos of southern Sulawesi, Indonesia. Using mixed methods—a survey of plastic literacy and behaviour, household interviews about purchasing and disposal, and focus group discussions to generate shared mental models—we identify a complex set of factors contributing to extensive plastic leakage into the marine environment. The rising standard of living has allowed people in low resource, remote communities to buy more single-use plastic items than they could before. Meanwhile complex geography and minimal collection services make waste management a difficult issue, and leave the communities themselves to shoulder the impacts of the ocean plastic crisis. Although plastic literacy is low, there is little the coastal communities can do unless presented with better choice architecture both on the supply side and in disposal options. Our results suggest that for such coastal communities improved waste disposal is urgent. Responsible supply chains and non-plastic alternatives are needed. Producers and manufacturers can no longer focus only on low-cost packaged products, without taking responsibility for the outcomes. Without access to biodegradable, environmentally friendly products, and a circular plastic system, coastal communities and surrounding marine ecosystems will continue to be inundated in plastic waste.

High-throughput diagnosis of human pathogens and fecal contamination in marine recreational water

An X-L, Wang J-Y, Pu Q, Li H, Pan T, Li H-Q, Pan F-X, Su J-Q. High-throughput diagnosis of human pathogens and fecal contamination in marine recreational water. Environmental Research [Internet]. 2020 ;190:109982. Available from: https://www.sciencedirect.com/science/article/pii/S0013935120308793?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Waterborne pathogens and their associated diseases are major threats to public health, and surveillance of pathogens and identification of the sources of pollution are imperative for preventing infections. However, simultaneously quantitative detection of multiple pathogens and pollution sources in water environments is the major challenge. In this study, we developed and validated a highly sensitive (mostly >80%) and highly specific (>99%) high-throughput quantitative PCR (HT-qPCR) approach, which could simultaneously quantify 68 marker genes of 33 human pathogens and 23 fecal markers of 10 hosts. The HT-qPCR approach was then successfully used to investigate pathogens and fecal pollution in marine recreational water samples of Xiamen, China. Totally, seven pathogenic marker genes were found in 13 beach bathing waters, which targeted Acanthamoeba spp., Clostridium perfringens, enteropathogenic Escherichia coliKlebsiella pneumoniaeVibrio cholera/V. parahaemolyticus and Legionella spp.. Fecal markers from human and dog were the most frequently detected, indicating human and dog feces were the main contamination in the recreational waters. Nanopore sequencing of full-length 16S rRNA gene revealed that 28 potential human pathogens were detected and electrical conductivity, salinity, oxidation-reduction potential and dissolved oxygen were significantly correlated with the variation in bacterial community. Our results demonstrated that HT-qPCR approach had the potential rapid quantification of microbial contamination, providing useful data for assessment of microbial pathogen associated health risk and development of management practices to protect human health.

Nanoplastics affect moulting and faecal pellet sinking in Antarctic krill (Euphausia superba) juveniles

Bergami E, Manno C, Cappello S, Vannuccini ML, Corsi I. Nanoplastics affect moulting and faecal pellet sinking in Antarctic krill (Euphausia superba) juveniles. Environment International [Internet]. 2020 ;143:105999. Available from: https://www.sciencedirect.com/science/article/pii/S0160412020319541?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Plastic debris has been identified as a potential threat to Antarctic marine ecosystems, however, the impact of nanoplastics (<1 μm) is currently unexplored. Antarctic krill (Euphausia superba) is a keystone species of Southern Ocean pelagic ecosystems, which plays a central role in the Antarctic food webs and carbon (C) cycle. Krill has been shown to rapidly fragment microplastic beads through the digestive system, releasing nanoplastics with unknown toxicological effects. Here we exposed krill juveniles to carboxylic (COOH, anionic) and amino- (NH2, cationic) polystyrene nanoparticles (PS NPs) and we investigated lethal and sub-lethal endpoints after 48 h. The analysis of PS NP suspensions in Antarctic sea water (SW) media showed that PS-COOH formed large agglomerates (1043 ± 121 nm), while PS-NH2 kept their nominal size (56.8 ± 3 nm) during the exposure time. After 48 h, no mortality was found but increase in exuviae production (12.6 ± 1.3%) and reduced swimming activity were observed in juveniles exposed to PS-NH2. The microbial community composition in SW supports the release of krill moults upon PS NP exposure and stimulates further research on the pivotal role of krill in shaping Southern Ocean bacterial assemblages. The presence of fluorescent signal in krill faecal pellets (FPs) confirmed the waterborne ingestion and egestion of PS-COOH at 48 h of exposure. Changes in FP structure and properties were also associated to the incorporation of PS NPs regardless of their surface charge. The effects of PS NPs on krill FP properties were compared to Control 0 h as a reference for full FPs (plastic vs food) and Control 48 h as a reference for more empty-like FPs (plastic vs lack of food). Exposure to PS NPs led to a FP sinking rate comparable to Control 48 h, but significantly lower than Control 0 h (58.40 ± 23.60 m/d and 51.23 ± 28.60 m/d for PS-COOH and PS-NH2; 168.80 ± 74.58 m/d for Control 0 h). Considering the important role played by krill in the food web and C export in the Southern Ocean, the present study provides cues about the potential impact of nanoplastics on Antarctic pelagic ecosystems and their biogeochemical cycles.

Plastic Ingestion in Sardines (Sardinops sagax) From Frenchman Bay, Western Australia, Highlights a Problem in a Ubiquitous Fish

Crutchett T, Paterson H, Ford BM, Speldewinde P. Plastic Ingestion in Sardines (Sardinops sagax) From Frenchman Bay, Western Australia, Highlights a Problem in a Ubiquitous Fish. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00526/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The ingestion of plastic debris has been studied in many marine fish species, although comparisons between species can be difficult due to factors thought to influence ingestion rates, such as habitat preference, feeding behaviours and trophic level. Sardines are found internationally in many coastal environments and represent a potential sentinel species for monitoring and comparing marine plastic exposure rates. We conducted a pilot study, examining the rate of plastic ingestion in 27 commercially caught sardines (Sardinops sagax) from a low populated coastal region of Western Australia. A total of 251 potentially anthropogenic particles were extracted by chemical digestion of the gastrointestinal tract and classified visually. Fibres were the dominant type of material recovered (82.9%), with both yellow (39.8%) and black (32.7%) coloured particles commonly observed. A subset of 64 particles (25.5%), were subject to Fourier transform infrared (FTIR) spectroscopy to identify polymer composition. This chemical characterisation identified seven plastic items (polypropylene, nylon and polyethylene) and a variety of cellulose-based material that was further examined and classified as natural or semi-synthetic. The mean plastic ingestion rate was 0.3 ± 0.4 particles per fish, suggesting Western Australian sardines ingest relatively low concentrations of plastic when compared to international sardine populations examined using similar methodologies. Despite comparatively low concentrations, plastic and semi-synthetic material are still being ingested by sardines from a low populated coastal region demonstrating the ubiquitous nature of the marine debris problem.

Can Water Constituents Be Used as Proxy to Map Microplastic Dispersal Within Transitional and Coastal Waters?

Piehl S, Atwood EC, Bochow M, Imhof HK, Franke J, Siegert F, Laforsch C. Can Water Constituents Be Used as Proxy to Map Microplastic Dispersal Within Transitional and Coastal Waters?. Frontiers in Environmental Science [Internet]. 2020 ;8. Available from: https://www.frontiersin.org/articles/10.3389/fenvs.2020.00092/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1371295_25_Enviro_20200707_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Due to high spatiotemporal variability of aquatic systems, relationships between microplastic sources and sinks are highly complex and transportation pathways yet to be understood. Field data acquisitions are a necessary component for monitoring of microplastic contamination but alone cannot capture such complex relationships. Remote sensing is a key technology for environmental monitoring through which extrapolation of spatially limited field data to larger areas can be obtained. In this field study we tested whether microplastic distribution follows the same transport pattern as water constituents depictable from satellite images, namely chlorophyll-a, suspended particulate matter, and colored dissolved organic matter, and discuss their applicability as proxies. As rivers are a major source for marine microplastic contamination, we sampled three example river systems: the lower courses and river mouths of the Trave and Elbe estuary in Germany and the Po delta in Italy. For a full quantitative analysis of microplastics (>300 μm), ATR- and FPA-based μFT-IR spectroscopy and NIR imaging spectroscopy were utilized. Comparing water constituents with in-situ data using regression analysis, neither a relationship for the Elbe estuary nor for the Po delta was found. Only for the Trave river, a positive relationship between microplastics and water constituents was present. Differences in hydrodynamic conditions and spatiotemporal dynamics of water constituents and microplastic emissions among the river systems are possible explanations for the contrary results. Based on our results no conclusions on other river systems and likewise different seasons can be drawn. For remote sensing algorithms of water constituents to be used as microplastic proxy an adaption for each system as well as for different seasons would thus be necessary. The lower detection limit of 300 μm for microplastics could also have influenced relationships as microplastic abundance exponentially increases with decreasing size class. Further studies with improved sampling methods are necessary to assess our proposed method.

Diatom aggregation when exposed to crude oil and chemical dispersant: Potential impacts of ocean acidification

Genzer JL, Kamalanathan M, Bretherton L, Hillhouse J, Xu C, Santschi PH, Quigg A. Diatom aggregation when exposed to crude oil and chemical dispersant: Potential impacts of ocean acidification Matsakas L. PLOS ONE [Internet]. 2020 ;15(7):e0235473. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235473
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Diatoms play a key role in the marine carbon cycle with their high primary productivity and release of exudates such as extracellular polymeric substances (EPS) and transparent exopolymeric particles (TEP). These exudates contribute to aggregates (marine snow) that rapidly transport organic material to the seafloor, potentially capturing contaminants like petroleum components. Ocean acidification (OA) impacts marine organisms, especially those that utilize inorganic carbon for photosynthesis and EPS production. Here we investigated the response of the diatom Thalassiosira pseudonana grown to present day and future ocean conditions in the presence of a water accommodated fraction (WAF and OAWAF) of oil and a diluted chemically enhanced WAF (DCEWAF and OADCEWAF). Tpseudonana responded to WAF/DCEWAF but not OA and no multiplicative effect of the two factors (i.e., OA and oil/dispersant) was observed. Tpseudonana released more colloidal EPS (< 0.7 μm to > 3 kDa) in the presence of WAF/DCEWAF/OAWAF/OADCEWAF than in the corresponding Controls. Colloidal EPS and particulate EPS in the oil/dispersant treatments have higher protein-to-carbohydrate ratios than those in the control treatments, and thus are likely stickier and have a greater potential to form aggregates of marine oil snow. More TEP was produced in response to WAF than in Controls; OA did not influence its production. Polyaromatic hydrocarbon (PAH) concentrations and distributions were significantly impacted by the presence of dispersants but not OA. PAHs especially Phenanthrenes, Anthracenes, Chrysenes, Fluorenes, Fluoranthenes, Pyrenes, Dibenzothiophenes and 1-Methylphenanthrene show major variations in the aggregate and surrounding seawater fraction of oil and oil plus dispersant treatments. Studies like this add to the current knowledge of the combined effects of aggregation, marine snow formation, and the potential impacts of oil spills under ocean acidification scenarios.

Synthetic Microfiber and Microbead Exposure and Retention Time in Model Aquatic Species Under Different Exposure Scenarios

Bour A, Hossain S, Taylor M, Sumner M, Almroth BCarney. Synthetic Microfiber and Microbead Exposure and Retention Time in Model Aquatic Species Under Different Exposure Scenarios. Frontiers in Environmental Science [Internet]. 2020 ;8. Available from: https://www.frontiersin.org/articles/10.3389/fenvs.2020.00083/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1371295_25_Enviro_20200707_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Synthetic microfibers have been reported in most aquatic environments and represent a large proportion of environmental microplastics. However, they remain largely under-represented in microplastic ecotoxicity studies. The present study aims to investigate particle interaction with, and retention time in, aquatic organisms comparing microfibers, and microbeads. We used brine shrimp (Artemia sp.) and fish (Gasterosteus aculeatus) as invertebrate and vertebrate models, respectively. Organisms were exposed to a mixture of microbeads (polyethylene, 27–32 μm) and microfibers (dope dyed polyester; 500 μm-long) for 2 h, at high concentrations (100,000 part./L) in order to maximize organism-particles interaction. Artemia were exposed in the presence or absence of food. Fish were exposed either via the trophic route or directly via water, and water exposures were performed either in freshwater or seawater. In the absence of food, Artemia ingested high numbers of microbeads, retained in their digestive tract for up to 96 h. Microfiber ingestion was very limited, and its egestion was fast. In the presence of food, no microfiber was ingested, microbead ingestion was limited, and egestion was fast (48 h). Limited particle ingestion was observed in fish exposed via water, and particle retention time in gut did not exceed 48 h, both for direct and trophic exposure. However, water exposures resulted in a higher number of particles present in gills, and average retention time was higher in gills, compared to gut. This suggests that gills are organs susceptible to microplastic exposure and should be taken into account in fish exposure and effect studies. Our results show that particle ingestion and retention by organisms differ between microbeads and microfibers, suggesting particle selection based on size, shape, and/or color and species-specific selective feeding. We also showed that the presence of food results in limited particle ingestion and retention in Artemia and that microbeads are more likely to be transferred to organisms from upper trophic levels than microfibers. Finally, fish exposure to particles was not significantly different between freshwater and seawater conditions.

Behavior and Bio-Interactions of Anthropogenic Particles in Marine Environment for a More Realistic Ecological Risk Assessment

Corsi I, Bergami E, Grassi G. Behavior and Bio-Interactions of Anthropogenic Particles in Marine Environment for a More Realistic Ecological Risk Assessment. Frontiers in Environmental Science [Internet]. 2020 ;8. Available from: https://www.frontiersin.org/articles/10.3389/fenvs.2020.00060/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1359578_25_Enviro_20200623_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Owing to production, usage, and disposal of nano-enabled products as well as fragmentation of bulk materials, anthropogenic nanoscale particles (NPs) can enter the natural environment and through different compartments (air, soil, and water) end up into the sea. With the continuous increase in production and associated emissions and discharges, they can reach concentrations able to exceed toxicity thresholds for living species inhabiting marine coastal areas. Behavior and fate of NPs in marine waters are driven by transformation processes occurring as a function of NP intrinsic and extrinsic properties in the receiving seawaters. All those aspects have been overlooked in ecological risk assessment. This review critically reports ecotoxicity studies in which size distribution, surface charges and bio−nano interactions have been considered for a more realistic risk assessment of NPs in marine environment. Two emerging and relevant NPs, the metal-based titanium dioxide (TiO2), and polystyrene (PS), a proxy for nanoplastics, are reviewed, and their impact on marine biota (from planktonic species to invertebrates and fish) is discussed as a function of particle size and surface charges (negative vs. positive), which affect their behavior and interaction with the biological material. Uptake of NPs is related to their nanoscale size; however, in vivo studies clearly demonstrated that transformation (agglomerates/aggregates) occurring in both artificial and natural seawater drive to different exposure routes and biological responses at cellular and organism level. Adsorption of single particles or agglomerates onto the body surface or their internalization in feces can impair motility and affect sinking or floating behavior with consequences on populations and ecological function. Particle complex dynamics in natural seawater is almost unknown, although it determines the effective exposure scenarios. Based on the latest predicted environmental concentrations for TiO2 and PS NPs in the marine environment, current knowledge gaps and future research challenges encompass the comprehensive study of bio−nano interactions. As such, the analysis of NP biomolecular coronas can enable a better assessment of particle uptake and related cellular pathways leading to toxic effects. Moreover, the formation of an environmentally derived corona (i.e., eco-corona) in seawater accounts for NP physical–chemical alterations, rebounding on interaction with living organisms and toxicity.

Floating microplastics in a coastal embayment: A multifaceted issue

Frias JPGL, Lyashevska O, Joyce H, Pagter E, Nash R. Floating microplastics in a coastal embayment: A multifaceted issue. Marine Pollution Bulletin [Internet]. 2020 ;158:111361. Available from: https://www.sciencedirect.com/science/article/pii/S0025326X20304793
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Floating microplastic debris at the ocean's surface represents about 1% of all plastics found in the environment, with the remainder thought to be either deposited along the coast or sinks to the bottom of the ocean. This exploratory research on a coastal embayment in the Northeast Atlantic Ocean assesses floating microplastic densities and the potential influence of wind. A total of 1182 floating microplastic particles were retrieved from a total surface seawater volume of 2039.86 m3. The average microplastic density (0.56 ± 0.33 MP m−3) is based on a sample of 20 manta trawls. This study reports primary microplastics (microbeads) floating in Irish coastal waters for the first-time. Compared to similar bays in Europe, Galway Bay has a similar microplastic density range. Microplastics in surface waters are a multifaceted issue therefore, multiple types of sample collection along with associated environmental variables are recommended for coastal monitoring purposes.

Recycling of European plastic is a pathway for plastic debris in the ocean

Bishop G, Styles D, Lens PNL. Recycling of European plastic is a pathway for plastic debris in the ocean. Environment International [Internet]. 2020 ;142:105893. Available from: https://www.sciencedirect.com/science/article/pii/S0160412020318481
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Polyethylene (PE) is one of the most common types of plastic. Whilst an increasing share of post-consumer plastic waste from Europe is collected for recycling, 46% of separated PE waste is exported outside of the source country (including intra-EU trade). The fate of this exported European plastic is not well known. This study integrated data on PE waste flows in 2017 from UN Comtrade, an open repository providing detailed international trade data, with best available information on waste management in destination countries, to model the fate of PE exported for recycling from Europe (EU-28, Norway and Switzerland) into: recycled high-density PE (HDPE) and low-density PE (LDPE) resins, “landfill”, incineration and ocean debris. Data uncertainty was reflected in three scenarios representing high, low and average recovery efficiency factors in material recovery facilities and reprocessing facilities, and different ocean debris fate factors. The fates of exported PE were then linked back to the individual European countries of export. Our study estimated that 83,187 Mg (tonnes) (range: 32,115–180,558 Mg), or 3% (1–7%) of exported European PE in 2017 ended up in the ocean, indicating an important and hitherto undocumented pathway of plastic debris entering the oceans. The countries with the greatest percentage of exported PE ending up as recycled HDPE or LDPE were Luxembourg and Switzerland (90% recycled for all scenarios), whilst the country with the lowest share of exported PE being recycled was the United Kingdom (59–80%, average 69% recycled). The results showed strong, significant positive relationships between the percentage of PE exported out of Europe and the percentage of exports which potentially end up as ocean debris. Export countries may not be the ultimate countries of origin owing to complex intra-EU trade in PE waste. Although somewhat uncertain, these mass flows provide pertinent new evidence on the efficacy and risks of current plastic waste management practices pertinent to emerging regulations around trade in plastic waste, and to the development of a more circular economy.

Pages

Subscribe to RSS - Pollution and Marine Debris