Resilience

Coastal vulnerability to climate change in China’s Bohai Economic Rim

Zhang Y, Wu T, Arkema KK, Han B, Lu F, Ruckelshaus M, Ouyang Z. Coastal vulnerability to climate change in China’s Bohai Economic Rim. Environment International [Internet]. 2021 ;147:106359. Available from: sciencedirect.com/science/article/pii/S0160412020323138?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Climate change and human activities exert a wide range of stressors on urban coastal areas. Synthetical assessment of coastal vulnerability is crucial for effective interventions and long-term planning. However, there have been few studies based on integrative analyses of ecological and physical characteristics and socioeconomic conditions in urban coastal areas. This study developed a holistic framework for assessing coastal vulnerability from three dimensions - biophysical exposure, sensitivity and adaptive capacity - and applied it to the coast of Bohai Economic Rim, an extensive and important development zone in China. A composite vulnerability index (CVI) was developed for every 1 km2 segment of the total 5627 km coastline and the areas that most prone to coastal hazards were identified by mapping the distribution patterns of the CVIs in the present and under future climate change scenarios. The CVIs show a spatial heterogeneity, with higher values concentrated along the southwestern and northeastern coasts and lower values concentrated along the southern coasts. Currently, 20% of the coastlines with approximately 350,000 people are highly vulnerable to coastal hazards. With sea-level rises under the future scenarios of the year 2100, more coastlines will be highly vulnerable, and the amount of highly-threatened population was estimated to increase by 13–24%. Among the coastal cities, Dongying was categorized as having the highest vulnerability, mainly due to poor transportation and medical services and low GDP per capita, which contribute to low adaptive capacity. Our results can benefit decision-makers by highlighting prioritized areas and identifying the most important determinants of priority, facilitating location-specific interventions for climate-change adaptation and sustainable coastal management.

A Synthesis of Deep Benthic Faunal Impacts and Resilience Following the Deepwater Horizon Oil Spill

Schwing PT, Montagna PA, Joye SB, Paris CB, Cordes EE, McClain CR, Kilborn JP, Murawski SA. A Synthesis of Deep Benthic Faunal Impacts and Resilience Following the Deepwater Horizon Oil Spill. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.560012/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1481182_45_Marine_20201112_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The Deepwater Horizon (DWH) oil spill significantly impacted the northern Gulf of Mexico (nGoM) deep benthos (>125 m water depth) at different spatial scales and across all community size and taxa groups including microbes, foraminifera, meiofauna, macrofauna, megafauna, corals, and demersal fishes. The resilience across these communities was heterogeneous, with some requiring years if not decades to fully recover. To synthesize ecosystem impacts and recovery following DWH, the Gulf of Mexico Research Initiative (GOMRI) Core 3 synthesis group subdivided the nGoM into four ecotypes: coastal, continental shelf, open-ocean, and deep benthic. Here we present a synopsis of the deep benthic ecotype status and discuss progress made on five tasks: (1) summarizing pre- and post-oil spill trends in abundance, species composition, and dynamics; (2) identifying missing data/analyses and proposing a strategy to fill in these gaps; (3) constructing a conceptual model of important species interactions and impacting factors; (4) evaluating resiliency and recovery potential of different species; and (5) providing recommendations for future long-term benthic ecosystem research programs. To address these tasks, we assessed time series to detect measures of population trends. Moreover, a benthic conceptual model for the GoM deep benthos was developed and a vulnerability-resilience analysis was performed to enable holistic interpretation of the interrelationships among ecotypes, resources, and stressors. The DWH oil spill underscores the overall need for a system-level benthic management decision support tool based on long-term measurement of ecological quality status (EQS). Production of such a decision support tool requires temporal baselines and time-series data collections. This approach provides EQS for multiple stressors affecting the GoM beyond oil spills. In many cases, the lessons learned from DWH, the gaps identified, and the recommended approaches for future long-term hypothesis-driven research can be utilized to better assess impacts of any ecosystem perturbation of industrial impact, including marine mineral extraction.

Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery

Perkins NR, Hosack GR, Foster SD, Monk J, Barrett NS. Monitoring the resilience of a no-take marine reserve to a range extending species using benthic imagery Halford A. PLOS ONE [Internet]. 2020 ;15(8):e0237257. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237257
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Global climate change is driving the redistribution of marine species and thereby potentially restructuring endemic communities. Understanding how localised conservation measures such as protection from additional human pressures can confer resilience to ecosystems is therefore an important area of research. Here, we examine the resilience of a no-take marine reserve (NTR) to the establishment of urchin barrens habitat. The barrens habitat is created through overgrazing of kelp by an invading urchin species that is expanding its range within a hotspot of rapid climate change. In our study region, a multi-year monitoring program provides a unique time-series of benthic imagery collected by an Autonomous Underwater Vehicle (AUV) within an NTR and nearby reference areas. We use a Bayesian hierarchical spatio-temporal modelling approach to estimate whether the NTR is associated with reduced formation of urchin barrens, and thereby enhances local resilience. Our approach controls for the important environmental covariates of depth and habitat complexity (quantified as rugosity derived from multibeam sonar mapping), as well as spatial and temporal dependence. We find evidence for the NTR conferring resilience with a strong reserve effect that suggests improved resistance to the establishment of barrens. However, we find a concerning and consistent trajectory of increasing barrens cover in both the reference areas and the NTR, with the odds of barrens increasing by approximately 32% per year. Thus, whereas the reserve is demonstrating resilience to the initial establishment of barrens, there is currently no evidence of recovery once barrens are established. We also find that depth and rugosity covariates derived from multibeam mapping provide useful predictors for barrens occurrence. These results have important management implications as they demonstrate: (i) the importance of monitoring programs to inform adaptive management; (ii) that NTRs provide a potential local conservation management tool under climate change impacts, and (iii) that technologies such as AUVs and multibeam mapping can be harnessed to inform regional decision-making. Continuation of the current monitoring program is required to assess whether the NTR can provide long term protection from a phase shift that replaces kelp with urchin barrens.

Influence of Local Pressures on Maldivian Coral Reef Resilience Following Repeated Bleaching Events, and Recovery Perspectives

Montefalcone M, Morri C, Bianchi CNike. Influence of Local Pressures on Maldivian Coral Reef Resilience Following Repeated Bleaching Events, and Recovery Perspectives. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00587/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Two severe heat waves triggered coral bleaching and mass mortality in the Maldives in 1998 and 2016. Analysis of live coral cover data from 1997 to 2019 in shallow (5 m depth) reefs of the Maldives showed that the 1998 heat wave caused more than 90% of coral mortality leaving only 6.8 ± 0.3% of survived corals in all the shallow reefs investigated. No significant difference in coral mortality was observed among atolls with different levels of human pressure. Maldivian reefs needed 16 years to recover to the pre-bleaching hard coral cover values. The 2016 heat wave affected all reefs investigated, but reefs in atolls with higher human pressure showed greater coral mortality than reefs in atolls with lower human pressure. Additionally, exposed (ocean) reefs showed lower coral mortality than those in sheltered (lagoon) reefs. The reduced coral mortality in 2016 as compared to 1998 may provide some support to the Adaptive Bleaching Hypothesis (ABH) in shallow Maldivian reefs, but intensity and duration of the two heat waves were different. Analysis of coral cover data collected along depth profiles on the ocean sides of atolls, from 10 to 50 m, allowed the comparison of coral mortality at different depths to discuss the Deep Refuge Hypothesis (DRH). In the upper mesophotic zone (i.e., between 30 and 50 m), coral mortality after bleaching was negligible. However, live coral cover did not exceed 15%, a value lower than coral survival in shallow reefs. Low cover values of corals surviving in the mesophotic reefs suggest that their role as refuge or seed banks for the future recovery of some species in shallow-water reefs of the Maldives may be small. The repeatedly high coral mortality after bleaching events and the long recovery period, especially in sites with human pressure, suggest that the foreseen increased frequency of bleaching events would jeopardize the future of Maldivian reefs, and ask for reducing local pressures to improve their resilience.

End Overfishing and Increase the Resilience of the Ocean to Climate Change

U. Sumaila R, Tai TC. End Overfishing and Increase the Resilience of the Ocean to Climate Change. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00523/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Marine fish stocks and the ecosystems they inhabit are in decline in many parts of our ocean, including in some European waters, because of overfishing and the ecosystem effect of fishing in general. Simultaneously, climate change is disrupting the physics, chemistry and ecology of the ocean, with significant consequences on the life it holds. While the positive effects of mitigating climate change on the ocean and marine life are currently being documented, papers that examine how ending overfishing could increase ocean resilience to climate change are less common. The goal of this paper is to review the current literature and conduct an analysis that demonstrate that ending overfishing and reducing other negative ecosystem effects of fishing would make fish stocks and marine ecosystems more resilient to climate change. Our findings suggest that fish and fish stocks are no different from other living organisms and are more likely to survive external pressures when healthy.

South Atlantic Coral Reefs Are Major Global Warming Refugia and Less Susceptible to Bleaching

Mies M, Francini-Filho RB, Zilberberg C, Garrido AG, Longo GO, Laurentino E, Güth AZ, Sumida PYG, Banha TNS. South Atlantic Coral Reefs Are Major Global Warming Refugia and Less Susceptible to Bleaching. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00514/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Mass coral bleaching has increased in intensity and frequency and has severely impacted shallow tropical reefs worldwide. Although extensive investigation has been conducted on the resistance and resilience of coral reefs in the Indo-Pacific and Caribbean, the unique reefs of the South Atlantic remain largely unassessed. Here we compiled primary and literature data for reefs from three biogeographical regions: Indo-Pacific, Caribbean and South Atlantic and performed comparative analyses to investigate whether the latter may be more resistant to bleaching. Our findings show that South Atlantic corals display critical features that make them less susceptible to mass coral bleaching: (i) deeper bathymetric distribution, as species have a mean maximum depth of occurrence of 70 m; (ii) higher tolerance to turbidity, as nearly 60% of species are found in turbid conditions; (iii) higher tolerance to nutrient enrichment, as nitrate concentration in the South Atlantic is naturally elevated; (iv) higher morphological resistance, as massive growth forms are dominant and comprise two thirds of species; and (v) more flexible symbiotic associations, as 75% of corals and 60% of symbiont phylotypes are generalists. Such features were associated with occurrence of fewer bleaching episodes with coral mortality in the South Atlantic, approximately 60% less than the Indo-Pacific and 50% less than the Caribbean. In addition, no mass coral mortality episodes associated with the three global mass bleaching events have been reported for the South Atlantic, which suffered considerably less bleaching. These results show that South Atlantic reefs display several remarkable features for withstanding thermal stress. Together with a historic experience of lower heat stress, our findings may explain why climate change impacts in this region have been less intense. Given the large extension and latitudinal distribution of South Atlantic coral reefs and communities, the region may be recognized as a major refugium and likely to resist climate change impacts more effectively than Indo-Pacific and Caribbean reefs.

Stakeholder-defined scientific needs for coastal resilience decisions in the Northeast U.S.

Molino GD, Kenney MA, Sutton-Grier AE. Stakeholder-defined scientific needs for coastal resilience decisions in the Northeast U.S. Marine Policy [Internet]. 2020 ;118:103987. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X19306955
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Over the past decade, coastal communities and ecosystems in the Northeast United States have begun to face acute and chronic impacts of climate change. Extreme events such as Superstorm Sandy caused stakeholders in this region to examine what information is needed to implement adaptation and mitigation plans to prepare for the next major storm. The objective of this study was to determine research needs identified by stakeholders in the Northeast needed for decision-support and policy creation so that scientists can target future research efforts to fill gaps. Modeled after document analysis methods in Dilling et al. (2014), this study examines documents sourced from local and regional organizations in both the public and private sectors to determine gaps in information necessary for climate resilience planning. Stakeholders throughout the Northeast expressed a need for solution-based research, in particular natural and nature-based solutions such as wetlands. Additionally, there was a need to better understand the economic impacts of climate change on key industries in the region as well as cost-benefit analyses of different adaptation options. It was also determined that government organizations, such as Sea Grant, play a crucial role in supporting stakeholder needs assessments both in terms of funding and providing necessary expertise. This study provides a baseline of stakeholder-expressed research needs in the Northeast to start the conversation between communities and researchers interested in conducting useable science.

Can prior exposure to stress enhance resilience to ocean warming in two oyster species?

Pereira RRC, Scanes E, Gibbs M, Byrne M, Ross PM. Can prior exposure to stress enhance resilience to ocean warming in two oyster species? Vengatesen T. PLOS ONE [Internet]. 2020 ;15(4):e0228527. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0228527
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Securing economically and ecologically significant molluscs, as our oceans warm due to climate change, is a global priority. South eastern Australia receives warm water in a strengthening East Australia Current and so resident species are vulnerable to elevated temperature and marine heat waves. This study tested whether prior exposure to elevated temperature can enhance resilience of oysters to ocean warming. Two Australian species, the flat oyster, Ostrea angasi, and the Sydney rock oyster, Saccostrea glomerata, were obtained as adults and “heat shocked” by exposure to a dose of warm water in the laboratory. Oysters were then transferred to elevated seawater temperature conditions where the thermal outfall from power generation was used as a proxy to investigate the impacts of ocean warming. Shell growth, condition index, lipid content and survival of flat oysters and condition of Sydney rock oysters were all significantly reduced by elevated seawater temperature in the field. Flat oysters grew faster than Sydney rock oysters at ambient temperature, but their growth and survival was more sensitive to elevated temperature. “Stress inoculation” by heat shock did little to ameliorate the negative effects of increased temperature, although the survival of heat-shocked flat oysters was greater than non-heat shocked oysters. Further investigations are required to determine if early exposure to heat stress can enhance resilience of oysters to ocean warming.

The resilience of coastal marshes to hurricanes: The potential impact of excess nutrients

Mo Y, Kearney MS, R. Turner E. The resilience of coastal marshes to hurricanes: The potential impact of excess nutrients. Environment International [Internet]. 2020 ;138:105409. Available from: https://www.sciencedirect.com/science/article/pii/S0160412019312814?via%3Dihub
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Hurricanes pose an increasing threat to coastal environments as the intensity and severity of hurricanes are predicted to increase under the changing climate. Coastal wetlands are effective nature-based defenses of coastal cities against storms. However, the ecosystems themselves are also susceptible to the impacts of hurricanes, which are highly complex and not fully understood. Here we utilize multi-decadal satellite data archives (Landsat 1984–2014 and MODIS 2005–2015) and long-term coast-wide field-based environmental data (1978–2018) to investigate the impacts of hurricanes Katrina (2005), Gustav (2008), and Isaac (2012) on the coastal marshes in Louisiana, USA, where the hurricanes made landfall. While the hurricanes had immediate impacts on the marshes’ biomass and area at an ecosystem scale, general recovery was observed in the next one and two years. We also found that the most severe damage always occurred in the intermediate and brackish marshes of the Breton Sound basin, where the nitrogen concentration in the water was significantly higher compared to areas with less damage (P < 0.01). Because excess nutrient can reduce the marshes' root growth and degrade their root mat, we posit that the long-term nutrient enrichment in the area, which resulted from the diverted Mississippi River water, has increased the marshes’ susceptibility to hurricanes. The results highlight the resilience of coastal marsh ecosystems against hurricanes, but also underline the profound synergistic effects of climatic and anthropogenic factors on the sustainability of coastal ecosystems, which have important implications for coastal management under the current climate trend.

Fish species sensitivity classification for environmental impact assessment, conservation and restoration planning

van Treeck R, Van Wichelen J, Wolter C. Fish species sensitivity classification for environmental impact assessment, conservation and restoration planning. Science of The Total Environment [Internet]. In Press :135173. Available from: https://www.sciencedirect.com/science/article/pii/S0048969719351654
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Species conservation, river rehabilitation, stock enhancement, environmental impact assessment and related planning tools require indicators to identify significant impacts but also mitigation success. Since river systems are shaped by disturbances from floods and droughts, typical riverine fish species should have evolved life history traits providing resilience against such disturbances. This study compiled and analyzed resilience traits of European lampreys and fish species to derive a novel sensitivity classification of species to mortality. We assembled life history traits like maximum length, migration type, mortality, fecundity, age at maturity, and generation time of 168 species and created a novel method to weigh and integrate all traits to generate a final sensitivity score from one (low sensitivity) to three (high sensitivity) for each species. Large-bodied, diadromous, rheophilic and lithophilic species such as sturgeons, sea trout, and Atlantic salmon usually appeared to have high sensitivity to additional adult fish mortality, whereas small-bodied, limnophilic and phytophilic species with fast generation cycles were of low sensitivity. The final scoring and classification of 168 European lampreys and fish species according to their sensitivity can be easily regionalized by selecting the most sensitive candidates according to the local species pool. This sensitivity classification has major implications for advancing impact assessment, allowing better targeting of species for conservation measures, benchmarking progress during rehabilitation and enhancing the objective evaluation of the success of restoration projects.

Pages

Subscribe to RSS - Resilience