Restoration

Valuing the ecosystem service benefits from kelp forest restoration: A choice experiment from Norway

Hynes S, Chen W, Vondolia K, Armstrong C, O'Connor E. Valuing the ecosystem service benefits from kelp forest restoration: A choice experiment from Norway. Ecological Economics [Internet]. 2021 ;179:106833. Available from: https://www.sciencedirect.com/science/article/pii/S0921800919319573?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Habitat loss and degradation are recognised as the most important causes of species decline and extinction in marine ecosystems. It is also widely recognised that a range of restoration actions are now essential to halt further decline. From a policy perspective, demonstration that restoration activity is in the interest of society is an important goal. In this paper, the welfare impacts of restoring Norwegian kelp forests to areas where they once were dominant but which now lie barren are estimated using the discrete choice modelling approach. The paper also examines if more direct contact with the environmental good under investigation influences respondents' willingness to pay to restore ecosystem features. The results indicate a positive and significant marginal societal willingness to pay for the ecosystem services associated with kelp forest restoration. The enhanced biodiversity levels as a result of the restoration activity are the most highly valued by the Norwegian public although the size of the area restored is more highly valued by respondents who are active marine environment users. It is argued that without incorporating these non-market values into the decision making process marine policy decisions may be made that are not in fact in the best interest of society.

An Interdisciplinary Approach for Valuing Changes After Ecological Restoration in Marine Cultural Ecosystem Services

Pouso S, Borja A, Uyarra MC. An Interdisciplinary Approach for Valuing Changes After Ecological Restoration in Marine Cultural Ecosystem Services. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00715/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1418755_45_Marine_20200903_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Ecological restoration in marine ecosystems is considered strategic to recover environmental conditions and ecosystem services. However, the traditional single-discipline perspectives followed for analyzing the results of both restoration projects (focused in the analysis of biophysical changes) and valuation of ecosystem services (focused in economic valuation), do not provide useful theoretical frameworks when working with cultural ecosystem services, where socio-economic and environmental components are complexly interrelated. We propose an interdisciplinary approach for analyzing changes in cultural ecosystem services in restored marine ecosystems, based on the DAPSI(W)R(M) framework and following a social-ecological system approach. Our methodology considers environmental, social and economic elements that may be contributing to changes in the provision and demand for cultural ecosystem services in restored ecosystems. Our approach was tested in the Nerbioi estuary, a system that, after the implementation of a wastewater treatment plant at the end of the 20th Century, changed from being one of the most polluted estuaries in Europe to a nearly recovered system. Based on previous studies that have analyzed partial components of the restoration process and of the recreational ecosystem services, here we provide an interdisciplinary picture of the changes occurred in the last 25 years, directly linking the management measures adopted to an increase in human well-being. In the applied methodology, the three discipline domains (social, economic, and environmental) transcend each other to provide a new holistic view, completely different from what one would expect from the addition of the parts. In conclusion, this interdisciplinary approach provides a systematic framework for studying changes in cultural ecosystem services in restored systems, with a practical application for valuing human benefits as outcomes of marine restoration projects.

Beyond Reef Restoration: Next-Generation Techniques for Coral Gardening, Landscaping, and Outreach

Schmidt-Roach S, Duarte CM, Hauser CAE, Aranda M. Beyond Reef Restoration: Next-Generation Techniques for Coral Gardening, Landscaping, and Outreach. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00672/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Anthropogenic disturbances have led to the degradation of coral reef systems globally, calling for proactive and progressive local strategies to manage individual ecosystems. Although restoration strategies such as assisted evolution have recently been proposed to enhance the performance of coral reef populations in response to current and future stressors, scalability of these concepts and implementation in habitat or ecosystem-wide management remains a major limitation for logistical and financial reasons. We propose to implement these restoration efforts into an ecotourism approach that embeds land-based coral gardening efforts as architectural landscape elements to enhance and beautify coastal development sites, providing additional value and rationale for ecotourism stakeholders to invest. Our approach extends and complements existing concepts integrating coral reef restoration in ecotourism projects by creating a participatory platform that can be experienced by the public, while effectively integrating numerous restoration techniques, and providing opportunities for long-term restoration and monitoring studies. In this context, we discuss options for pre-selection of corals and systematic, large-scale monitoring of coral genotype performance targeting higher resilience to future stressors. To reduce operating costs during out-planting, we suggest to create coral seeding hubs, clusters of closely transplanted conspecifics, to quickly and efficiently restore/enhance active reproduction. We discuss our land-based coral gardening approach in the context of positive impacts beyond reef restoration. By restoring and strengthening resilience of local populations, we believe this strategy will contribute to a net positive conservation impact, create a culture on restoration and enhance and secure blue economical investments that rely on healthy marine systems.

Lessons Learnt From Linking Global Recommendations With Localized Marine Restoration Schemes and Policy Options by Using Mixed Methods

Krause G, Wolf C, Happe A-K, Hauck J, Buttigieg PLuigi, Fuchs N, Scheve J, König C, Wittmer H, Raab K. Lessons Learnt From Linking Global Recommendations With Localized Marine Restoration Schemes and Policy Options by Using Mixed Methods. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00532/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In order to advance ongoing efforts in the (still emerging) field of marine restoration, different forms of knowledge must be combined: not only the biological and technical aspects, but also the social and cultural dimensions of marine restoration efforts. This calls for a newly combined array of methods that allows for a bridging of these different knowledge dimensions. Drawing on our experiences from the ongoing knowledge transfer processes of the INTERNAS project (Scientific Transfer of the results of INTERNational Assessments in the field of Earth and Environmental Research into the German policy context), we provide an overview of methods that were used to link global recommendations with localized marine restoration schemes and policy options. Using a mixed methods approach, we were able to capture and understand the pathways of knowledge transfer from globally synthesized scientific knowledge to local realities related to protecting and enhancing marine biodiversity in Germany. With this structured knowledge transfer approach, actionable solutions for marine conservation and restoration activities could be tailored to the specific national and regional circumstances. Using participatory methods, framework conditions like ecological, social, legal, and sectoral value judgment dimensions can be identified. This allows for the development of concerted solutions and creates a common ground for good governance towards marine restoration. When scientists engage not only as experts but also as reflexive facilitators in such participatory processes, it is ensured that more inclusive forms of knowledge are fostered that are necessary to better anticipate the potentials and likely pitfalls that marine restoration efforts may encounter. We conclude that existing knowledge on ecosystems, their goods and services as well as societal expectations need to be understood from the onset in any kind of marine restoration effort.

Seagrass Restoration Is Possible: Insights and Lessons From Australia and New Zealand

Tan YMei, Dalby O, Kendrick GA, Statton J, Sinclair EA, Fraser MW, Macreadie PI, Gillies CL, Coleman RA, Waycott M, et al. Seagrass Restoration Is Possible: Insights and Lessons From Australia and New Zealand. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00617/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Seagrasses are important marine ecosystems situated throughout the world’s coastlines. They are facing declines around the world due to global and local threats such as rising ocean temperatures, coastal development and pollution from sewage outfalls and agriculture. Efforts have been made to reduce seagrass loss through reducing local and regional stressors, and through active restoration. Seagrass restoration is a rapidly maturing discipline, but improved restoration practices are needed to enhance the success of future programs. Major gaps in knowledge remain, however, prior research efforts have provided valuable insights into factors influencing the outcomes of restoration and there are now several examples of successful large-scale restoration programs. A variety of tools and techniques have recently been developed that will improve the efficiency, cost effectiveness, and scalability of restoration programs. This review describes several restoration successes in Australia and New Zealand, with a focus on emerging techniques for restoration, key considerations for future programs, and highlights the benefits of increased collaboration, Traditional Owner (First Nation) and stakeholder engagement. Combined, these lessons and emerging approaches show that seagrass restoration is possible, and efforts should be directed at upscaling seagrass restoration into the future. This is critical for the future conservation of this important ecosystem and the ecological and coastal communities they support.

Know Thy Anemone: A Review of Threats to Octocorals and Anemones and Opportunities for Their Restoration

Steinberg RKate, Dafforn KA, Ainsworth T, Johnston EL. Know Thy Anemone: A Review of Threats to Octocorals and Anemones and Opportunities for Their Restoration. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00590/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1391749_45_Marine_20200730_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In studies of habitat-forming species, those that are not spatially dominant are often considered “non-primary” habitat and may be overlooked. This is despite the fact that minority habitat formers can provide critical complexity, food, and other services that underpin ecosystem biodiversity. Octocorals and anemones are found in marine and estuarine habitats across all climate zones. Despite their potentially important ecological roles, to date there have been few studies of their specific threats and stressors or attempts at their restoration. Here we review studies of the ecology of octocorals and anemones with a focus on threats and restoration. We identify many threats including habitat damage, collection and trade, disease, predation, pollution, and the most wide-spread – climate change. While evidence suggests that some octocorals and anemone populations may be more resilient to disturbances than stony corals because they often recruit and grow quickly, resilience is not guaranteed. Instead, resilience or susceptibility within this large group is likely to be site and species specific. We find that the loss of octocorals and anemones has been difficult to quantify as most species have no hard structures that remain following a mortality event. Only through long-term monitoring efforts have researchers been able to document change in these populations. Due to the increasing extent and severity of human impacts in marine ecosystems, restoration of habitat forming species is becoming increasingly necessary after disturbance events. To illustrate the challenges ahead for octocoral and anemone restoration, we present two examples of ongoing restoration efforts assessed against the International Standards for the Practice of Ecological Restoration. Restoration planning and implementation progress are documented for the Mediterranean red coral Corallium rubrum and the temperate Australian cauliflower soft coral, Dendronephthya australis. This review and the detailed case studies demonstrate that while some octocorals and anemones can provide resilient habitat within reef systems, a greater research focus on their ecology, threats, and restoration potential is urgently required.

Priorities and Motivations of Marine Coastal Restoration Research

Bayraktarov E, Brisbane S, Hagger V, Smith CS, Wilson KA, Lovelock CE, Gillies C, Steven ADL, Saunders MI. Priorities and Motivations of Marine Coastal Restoration Research. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00484/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Active restoration is becoming an increasingly important conservation intervention to counteract the degradation of marine coastal ecosystems. Understanding what has motivated the scientific community to research the restoration of marine coastal ecosystems and how restoration research projects are funded is essential if we want to scale-up restoration interventions to meaningful extents. Here, we systematically review and synthesize data to understand the motivations for research on the restoration of coral reefs, seagrass, mangroves, saltmarsh, and oyster reefs. We base this analysis off a published database of marine restoration studies, originally designed to estimate the cost and feasibility of marine coastal restoration, derived from mostly scientific studies published in peer-reviewed and some gray literature. For the present study, the database was updated with fields aimed at assessing the motivations, outcomes, and funding sources for each project. We classify restoration motivations into five categories: biotic, experimental, idealistic, legislative, and pragmatic. Moreover, we evaluate the variables measured and outcomes reported by the researchers and evaluate whether projects adhered to the Society for Ecological Restoration's (SER) standards for the practice of ecological restoration. The most common motivation of the scientific community to study restoration in marine coastal ecosystems was experimental i.e., to seek experimental data to answer ecological research questions or improve restoration approach, as expected since mostly peer-reviewed literature was evaluated here. There were differences in motivations among the five coastal ecosystems. For instance, biodiversity enhancement was the most common case for a biotic motivation in mangrove restoration projects. The most common metrics evaluated were growth/productivity, survivorship, habitat function, physical attributes, and reproduction. For most ecosystems, ecological outcomes were frequently reported, with socio-economic implications of the restoration rarely mentioned, except for mangroves. Projects were largely funded by governmental grants with some investment from private donations, non-governmental organizations, and the involvement of volunteers. Our findings and database provide critical data to align future research of the scientific community with the real social, economic and policy needs required to scale-up marine coastal restoration projects.

Playing to the Positives: Using Synergies to Enhance Kelp Forest Restoration

Eger AM, Marzinelli E, Gribben P, Johnson CR, Layton C, Steinberg PD, Wood G, Silliman BR, Vergés A. Playing to the Positives: Using Synergies to Enhance Kelp Forest Restoration. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00544/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1376892_45_Marine_20200714_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Kelp forests are highly productive foundation species along much of the world’s coastline. As a result, kelp are crucial to the ecological, social, and economic well-being of coastal communities. Yet, due to a combination of acute and chronic stressors, kelp forests are under threat and have declined in many locations worldwide. Active restoration of kelp ecosystems is an emerging field that aims to reverse these declines by mitigating negative stressors and then, if needed, introducing biotic material into the environment. To date, few restoration efforts have incorporated positive species interactions. This gap presents a potential shortcoming for the field as evidence from other marine ecosystems illustrates that the inclusion of positive species interactions can enhance restoration success. Additionally, as the climate continues to warm, this approach will be particularly pertinent as positive interactions can also expand the range of physical conditions under which species can persist. Here, we highlight how practitioners can use positive density dependence within and amongst kelp species to increase the chances of restoration success. At higher trophic levels, we emphasize how co-restoring predators can prime ecosystems for restoration. We also investigate how emerging technologies in genetic and microbial selection and manipulation can increase the tolerance of target species to warming and other stressors. Finally, we provide examples of how we can use existing anthropogenic activities to facilitate restoration while performing alternative purposes. As kelp forests continue to decline and the field of kelp restoration continues to develop, it is also important that we monitor these potential advancements and ensure they do not have unintended ecosystem effects, particularly with untested techniques such as genetic and microbial manipulations. Nevertheless, incorporating positive species interactions into future restoration practice stands to promote a more holistic form of restoration that also increases the likelihood of success in a shifting seascape.

Assessing restoration priorities for high-risk ecosystems: An application of the IUCN Red List of Ecosystems

Etter A, Andrade A, Nelson CR, Cortés J, Saavedra K. Assessing restoration priorities for high-risk ecosystems: An application of the IUCN Red List of Ecosystems. Land Use Policy [Internet]. 2020 ;99:104874. Available from: https://www.sciencedirect.com/science/article/pii/S0264837719322550
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Land clearing and ecosystem degradation are primary causes of loss of biodiversity and ecosystem services worldwide, putting at risk sustainable options for Earth and humankind. According to recent global estimates, degraded lands already account for at least 1 and up to 6 billion ha. Given high rates of habitat degradation and loss of biodiversity in human-dominated landscapes with high levels of ecosystem transformation, conventional approaches to conservation such as setting aside lands in protected areas, are not enough; in combination with ecosystem protection, ecological restoration is essential to ensure the conservation of biodiversity and delivery of ecosystem services. Despite recognition of the role of ecological restoration, the planning of restoration at the landscape scale remains a major challenge. Specifically, more studies are needed on developing restoration plans that maximize conservation and provisioning of ecosystem services, while minimizing competition with high-productivity land uses. We use Colombia, one of the world’s mega-diversity countries in which ca. 25 % of ecosystems are listed as critically endangered (CR), as a test case for exploring the potential advantages of including the Red List of Ecosystems, a newly developed tool for assessing conservation value, in restoration planning. We identified restoration priorities focused on both high-risk ecosystems and low-productivity lands, to maximize conservation value and minimize land-use conflicts. This approach allowed us to identify over 6 M ha of priority areas for restoration, targeting the restoration of 31 (75 %) of the country’s endangered ecosystems. Eight of the Regional Administrative Environmental Planning Areas (CARs) had greater than 20 % of their area identified as restoration priorities. We roughly estimated that the cost of restoring the prioritized areas with restoration through natural regeneration, using payment for ecosystem services (PES), would equal less than 50 % of the annual budget of the CARs. Our results are in sharp contrast (only 12 % agreement) with the priorities identified under the current National Restoration Strategy of Colombia, and highlight the potential contribution of the Red List of Ecosystems in refining and improving restoration planning strategies at both national and sub-national levels.

Estimating the Potential Blue Carbon Gains From Tidal Marsh Rehabilitation: A Case Study From South Eastern Australia

Gulliver A, Carnell PE, Trevathan-Tackett SM, Costa MDuarte de, Masqué P, Macreadie PI. Estimating the Potential Blue Carbon Gains From Tidal Marsh Rehabilitation: A Case Study From South Eastern Australia. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00403/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Historically, coastal “blue carbon” ecosystems (tidal marshes, mangrove forests, seagrass meadows) have been impacted and degraded by human intervention, mainly in the form of land acquisition. With increasing recognition of the role of blue carbon ecosystems in climate mitigation, protecting and rehabilitating these ecosystems becomes increasingly more important. This study evaluated the potential carbon gains from rehabilitating a degraded coastal tidal marsh site in south-eastern Australia. Tidal exchange at the study site had been restricted by the construction of earthen barriers for the purpose of reclaiming land for commercial salt production. Analysis of sediment cores (elemental carbon and 210Pb dating) revealed that the site had stopped accumulating carbon since it had been converted to salt ponds 65 years earlier. In contrast, nearby recovered (“control”) tidal marsh areas are still accumulating carbon at relatively high rates (0.54 tons C ha–1year–1). Using elevation and sea level rise (SLR) data, we estimated the potential future distribution of tidal marsh vegetation if the earthen barrier were removed and tidal exchange was restored to the degraded site. We estimated that the sediment-based carbon gains over the next 50 years after restoring this small site (360 ha) would be 9,000 tons C, which could offset the annual emissions of ∼7,000 passenger cars at present time (at 4.6 metric tons pa.) or ∼1,400 Australians. Overall, we recommend that this site is a promising prospect for rehabilitation based on the opportunity for blue carbon additionality, and that the business case for rehabilitation could be bolstered through valuation of other co-benefits, such as nitrogen removal, support to fisheries, sediment stabilization, and enhanced biodiversity.

Pages

Subscribe to RSS - Restoration