Soundscapes and Acoustics

Dolphin-Watching Boats Affect Whistle Frequency Modulation in Bottlenose Dolphins

Perez-Ortega B, Daw R, Paradee B, Gimbrere E, May-Collado LJ. Dolphin-Watching Boats Affect Whistle Frequency Modulation in Bottlenose Dolphins. Frontiers in Marine Science [Internet]. 2021 ;8. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2021.618420/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1571277_45_Marine_20210309_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Bottlenose dolphins’ whistles are key in social communication, conveying information about conspecifics and the environment. Therefore, their study can help to infer habitat use and identify areas of concern due to human activities. Here we studied the whistles of bottlenose dolphins (Tursiops truncatus) in two sites of the archipelago of Bocas del Toro, Panama, that contrast in boat traffic. Almirante Bay is a site dominated by taxi-boats and Dolphin Bay is a major location for boat-based dolphin watching. Recordings were made using bottom-mounted hydrophones and from the research boat using an over-the-side hydrophone and a broadband recording system. A total recording effort time of 1,726 h was analyzed. Our results show significant differences in boat detection between sites, and a higher number of whistles detected per minute in the site with tour-boat traffic. Furthermore, whistle modulation accounted for most of the differences between sites, boat presence, and whistle types. Dolphin whistle modulation is thought to be a potential indicator of emotional states including danger, alertness, and stress. In this study, dolphin signature whistle modulation increased significantly with boat presence in both sites but changes in modulation were greater in Dolphin Bay where tour-boats directly and sometimes aggressively interact with the animals. These results support a potential association between whistle modulation and stress (or alertness). These findings indicate that if tour-boat captains behave more like taxi-boat captains by e.g., reducing the distance of approach and contact time during dolphin interactions, dolphin communication, and emotional state would be less disrupted. These measures are implemented in the national guidelines for whale-watching and are known to tour-boat operators. The key to protecting these dolphins is in finding ways to effectively enforce these operator guidelines.

Silent winters and rock-and-roll summers: The long-term effects of changing oceans on marine fish vocalization

Siddagangaiah S, Chen C-F, Hu W-C, Danovaro R, Pieretti N. Silent winters and rock-and-roll summers: The long-term effects of changing oceans on marine fish vocalization. Ecological Indicators [Internet]. 2021 ;125:107456. Available from: https://www.sciencedirect.com/science/article/pii/S1470160X21001217?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The analysis of temporal trends and spatial patterns of marine sounds can provide crucial insights to assess the abundance, distribution, and behavior of fishes and of many other species. However, data on species-specific temporal and seasonal changes are still extremely limited. We report here the result of the longest recording ever conducted (five years, from 2014 to 2018) on fish vocalization. Findings from the Eastern Taiwan Strait (ETS) revealed a periodic fish chorusing pattern, with peaks in summer and almost complete silence, for ~2 months, during winter. Chorusing pattern was influenced by abiotic parameters, including temperature, tides and moon phase. We also report, for the first time, that extreme weather events (e.g., typhoons, storms with sediment resuspension) caused the cessation of the chorusing. The chorusing pattern explored in this long-term study provides important baseline data to understand the impact of climate change and of climate-driven extreme/episodic events on the phenology of fishes; this work also provides evidence that changes in the ambient conditions might significantly alter the phenology of vocalizing marine species.

Hurricane impacts on a coral reef soundscape

Simmons KR, Eggleston DB, Bohnenstiehl DWR. Hurricane impacts on a coral reef soundscape Chen CAllen. PLOS ONE [Internet]. 2021 ;16(2):e0244599. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244599
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Soundscape ecology is an emerging field in both terrestrial and aquatic ecosystems, and provides a powerful approach for assessing habitat quality and the ecological response of sound-producing species to natural and anthropogenic perturbations. Little is known of how underwater soundscapes respond during and after severe episodic disturbances, such as hurricanes. This study addresses the impacts of Hurricane Irma on the coral reef soundscape at two spur-and-groove fore-reef sites within the Florida Keys USA, using passive acoustic data collected before and during the storm at Western Dry Rocks (WDR) and before, during and after the storm at Eastern Sambo (ESB). As the storm passed, the cumulative acoustic exposure near the seabed at these sites was comparable to a small vessel operating continuously overhead for 1–2 weeks. Before the storm, sound pressure levels (SPLs) showed a distinct pattern of low frequency diel variation and increased high frequency sound during crepuscular periods. The low frequency band was partitioned in two groups representative of soniferous reef fish, whereas the high frequency band represented snapping shrimp sound production. Daily daytime patterns in low-frequency sound production largely persisted in the weeks following the hurricane. Crepuscular sound production by snapping shrimp was maintained post-hurricane with only a small shift (~1.5dB) in the level of daytime vs nighttime sound production for this high frequency band. This study suggests that on short time scales, temporal patterns in the coral reef soundscape were relatively resilient to acoustic energy exposure during the storm, as well as changes in the benthic habitat and environmental conditions resulting from hurricane damage.

Bottom trawling noise: Are fishing vessels polluting to deeper acoustic habitats?

Daly E, White M. Bottom trawling noise: Are fishing vessels polluting to deeper acoustic habitats?. Marine Pollution Bulletin [Internet]. 2021 ;162:111877. Available from: https://www.sciencedirect.com/science/article/pii/S0025326X20309954?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The impact of bottom trawling noise was quantified on two surrounding marine acoustic habitats using fixed mooring acoustic recorders. Noise during trawling activity is shown to be considerably louder than ambient noise and a nearby underway research vessel. Estimated source levels were above cetacean damage thresholds. Measurements at a submarine canyon indicated potential noise focussing, inferring a role for such features to enhance down slope noise propagation at continental margin sites. Modelled sound propagates more efficiently when sourced from trawling gear dragging along the seabed relative to the vessel as a surface source. Results are contextualised with respect to marine mammal harm, to other anthropogenic ocean noise sources, topography and seasons. Noise energy emitted by bottom trawling activity is a source of pollution that requires further consideration, in line with other pervasive trawling pressures on marine species and seabed habitats, especially in areas of heightened ecological susceptibility.

Underwater Acoustic Environment of Coastal Sea With Heavy Shipping Traffic: NE Baltic Sea During Wintertime

Syrjälä J, Kalliola R, Pajala J. Underwater Acoustic Environment of Coastal Sea With Heavy Shipping Traffic: NE Baltic Sea During Wintertime. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.589141/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1495887_45_Marine_20201201_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Shipping is the most pervasive source of anthropogenic underwater continuous noise and local intermittent noise. This study focused on the separation of anthropogenic intermittent noise from dynamic background noise in the Gulf of Finland using an adaptive threshold level (ATL) technique. The intermittent noise was validated with Automatic Identification System (AIS) data and the background noise with selected environmental factors. Separated components were characterized and compared with a sound exposure level (SEL) in three 1/3 octave bands. Intermittent noise can be separated with ATL in the Baltic Sea, and vessel traffic identified as the primary source. Background noise varies spatially and is partially explained by environmental factors. Intermittent noise has strong persisting influence on the acoustic environment near shipping lanes, elevating the SEL in each of the 1/3 octave bands: by 20–30 dB in the 63 Hz band, by 13–22 dB in the 125 Hz band and by 5–8 dB in the 2000 Hz band. We conclude that strong intermittent noise is characteristic to the underwater acoustic environment in the study area with heavy shipping traffic. By combining ATL with data from AIS, intermittent noise peaks in underwater hydrophone recordings can be associated with passages of individual vessels.

Detections of Whale Vocalizations by Simultaneously Deployed Bottom-Moored and Deep-Water Mobile Autonomous Hydrophones

Fregosi S, Harris DV, Matsumoto H, Mellinger DK, Barlow J, Baumann-Pickering S, Klinck H. Detections of Whale Vocalizations by Simultaneously Deployed Bottom-Moored and Deep-Water Mobile Autonomous Hydrophones. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00721/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1418755_45_Marine_20200903_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Advances in mobile autonomous platforms for oceanographic sensing, including gliders and deep-water profiling floats, have provided new opportunities for passive acoustic monitoring (PAM) of cetaceans. However, there are few direct comparisons of these mobile autonomous systems to more traditional methods, such as stationary bottom-moored recorders. Cross-platform comparisons are necessary to enable interpretation of results across historical and contemporary surveys that use different recorder types, and to identify potential biases introduced by the platform. Understanding tradeoffs across recording platforms informs best practices for future cetacean monitoring efforts. This study directly compares the PAM capabilities of a glider (Seaglider) and a deep-water profiling float (QUEphone) to a stationary seafloor system (High-frequency Acoustic Recording Package, or HARP) deployed simultaneously over a 2 week period in the Catalina Basin, California, United States. Two HARPs were deployed 4 km apart while a glider and deep-water float surveyed within 20 km of the HARPs. Acoustic recordings were analyzed for the presence of multiple cetacean species, including beaked whales, delphinids, and minke whales. Variation in acoustic occurrence at 1-min (beaked whales only), hourly, and daily scales were examined. The number of minutes, hours, and days with beaked whale echolocation clicks were variable across recorders, likely due to differences in the noise floor of each recording system, the spatial distribution of the recorders, and the short detection radius of such a high-frequency, directional signal type. Delphinid whistles and clicks were prevalent across all recorders, and at levels that may have masked beaked whale vocalizations. The number and timing of hours and days with minke whale boing sounds were nearly identical across recorder types, as was expected given the relatively long propagation distance of boings. This comparison provides evidence that gliders and deep-water floats record cetaceans at similar detection rates to traditional stationary recorders at a single point. The spatiotemporal scale over which these single hydrophone systems record sounds is highly dependent on acoustic features of the sound source. Additionally, these mobile platforms provide improved spatial coverage which may be critical for species that produce calls that propagate only over short distances such as beaked whales.

Acoustic Telemetry: A Tool to Monitor Fish Swimming Behavior in Sea-Cage Aquaculture

Muñoz L, Aspillaga E, Palmer M, Saraiva JL, Arechavala-Lopez P. Acoustic Telemetry: A Tool to Monitor Fish Swimming Behavior in Sea-Cage Aquaculture. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00645/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Acoustic telemetry techniques are very useful tools to monitor in detail the swimming behavior and spatial use of fish in artificial rearing environments at individual and group levels. We evaluated the feasibility of using passive acoustic telemetry to monitor fish welfare in sea-cage aquaculture at an industrial scale, characterizing for the first time the diel swimming and distribution patterns of gilthead seabream (Sparus aurata) at fine-scale. Ten fish were implanted with acoustic tags equipped with pressure and acceleration sensors, and monitored in a commercial-size sea-cage for a period of 1 month. Overall, fish exhibited clear differences in day vs. night patterns both on swimming activity and vertical distribution throughout the experiment. Space use increased at night after the implementation of structural environmental enrichment in the sea-cage. Acoustic telemetry may represent an advancement to monitor fish farming procedures and conditions, helping to promote fish welfare and product quality.

Assessing and mitigating impacts of motorboat noise on nesting damselfish

McCloskey KP, Chapman KE, Chapuis L, McCormick MI, Radford AN, Simpson SD. Assessing and mitigating impacts of motorboat noise on nesting damselfish. Environmental Pollution [Internet]. 2020 ;266:115376. Available from: https://www.sciencedirect.com/science/article/pii/S0269749120360644?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Motorboats are a pervasive, growing source of anthropogenic noise in marine environments, with known impacts on fish physiology and behaviour. However, empirical evidence for the disruption of parental care remains scarce and stems predominantly from playback studies. Additionally, there is a paucity of experimental studies examining noise-mitigation strategies. We conducted two field experiments to investigate the effects of noise from real motorboats on the parental-care behaviours of a common coral-reef fish, the Ambon damselfish Pomacentrus amboinensis, which exhibits male-only egg care. When exposed to motorboat noise, we found that males exhibited vigilance behaviour 34% more often and spent 17% more time remaining vigilant, compared to an ambient-sound control. We then investigated nest defence in the presence of an introduced conspecific male intruder, incorporating a third noise treatment of altered motorboat-driving practice that was designed to mitigate noise exposure via speed and distance limitations. The males spent 22% less time interacting with the intruder and 154% more time sheltering during normal motorboat exposure compared to the ambient-sound control, with nest-defence levels in the mitigation treatment equivalent to those in ambient conditions. Our results reveal detrimental impacts of real motorboat noise on some aspects of parental care in fish, and successfully demonstrate the positive effects of an affordable, easily implemented mitigation strategy. We strongly advocate the integration of mitigation strategies into future experiments in this field, and the application of evidence-based policy in our increasingly noisy world.

Soundscape of green turtle foraging habitats in Fiji, South Pacific

Papale E, Prakash S, Singh S, Batibasaga A, Buscaino G, Piovano S. Soundscape of green turtle foraging habitats in Fiji, South Pacific Patterson HM. PLOS ONE [Internet]. 2020 ;15(8):e0236628. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236628
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The soundscape features of the marine environment provide crucial information about ecosystem health for many species, and they are defined by the local biological, geophysical, and anthropogenic components. In this study, we investigated the soundscape at green turtle neritic foraging habitats in Fiji, South Pacific, with the aims of characterizing the contribution of each component and of comparing the levels of acoustic pressure among sites with different abundances of sea turtles. Four sites were selected at two islands, and one hydrophone was deployed at each site. Generalized additive models highlighted that sound pressure levels (SPLs) at low frequencies (125–250 Hz) were especially affected by wind conditions, while at higher frequencies (>250 Hz) SPLs were mostly influenced by fish and crustacean acoustic activity. Higher abundances of green turtles were found at sites with the highest levels of SPLs and the highest number of acoustic emissions by fishes and crustaceans but were not related to maximum seagrass and macroalgae coverage, or the highest number of fish. The selected coastal habitats have negligible anthropogenic noise, thus this study informs physiological and behavioral studies of the acoustic signatures that sea turtles might target and provides a baseline against which potential impact of soundscape changes on sea turtle spatial abundance and distribution can be evaluated.

Vessel noise affects routine swimming and escape response of a coral reef fish

Jimenez LVelasquez, Fakan EP, McCormick MI. Vessel noise affects routine swimming and escape response of a coral reef fish Januchowski-Hartley FAndrew. PLOS ONE [Internet]. 2020 ;15(7):e0235742. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235742
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

An increasing number of studies have shown that anthropogenic noise can negatively affect aspects of the anti-predator behaviour of reef fishes, potentially affecting fitness and survival. However, it has been suggested that effects could differ among noise sources. The present study compared two common sources of anthropogenic noise and investigated its effects on behavioural traits critical for fish survival. In a tank-based experiment we examined the effects of noise from 4-stroke motorboats and ships (bulk carriers > 50,000 tonnes) on the routine swimming and escape response of a coral reef fish, the whitetail damselfish (Pomacentrus chrysurus). Both 4-stroke boat and ship noise playbacks affected the fast-start response and routine swimming of whitetail damselfish, however the magnitude of the effects differed. Fish exposed to ship noise moved shorter distances and responded more slowly (higher response latency) to the startle stimulus compared to individuals under the 4-stroke noise treatment. Our study suggests that 4-stroke and ship noise can affect activity and escape response of individuals to a simulated predation threat, potentially compromising their anti-predator behaviour.

Pages

Subscribe to RSS - Soundscapes and Acoustics