Soundscapes and Acoustics

Acoustic Telemetry: A Tool to Monitor Fish Swimming Behavior in Sea-Cage Aquaculture

Muñoz L, Aspillaga E, Palmer M, Saraiva JL, Arechavala-Lopez P. Acoustic Telemetry: A Tool to Monitor Fish Swimming Behavior in Sea-Cage Aquaculture. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00645/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1406443_45_Marine_20200818_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Acoustic telemetry techniques are very useful tools to monitor in detail the swimming behavior and spatial use of fish in artificial rearing environments at individual and group levels. We evaluated the feasibility of using passive acoustic telemetry to monitor fish welfare in sea-cage aquaculture at an industrial scale, characterizing for the first time the diel swimming and distribution patterns of gilthead seabream (Sparus aurata) at fine-scale. Ten fish were implanted with acoustic tags equipped with pressure and acceleration sensors, and monitored in a commercial-size sea-cage for a period of 1 month. Overall, fish exhibited clear differences in day vs. night patterns both on swimming activity and vertical distribution throughout the experiment. Space use increased at night after the implementation of structural environmental enrichment in the sea-cage. Acoustic telemetry may represent an advancement to monitor fish farming procedures and conditions, helping to promote fish welfare and product quality.

Assessing and mitigating impacts of motorboat noise on nesting damselfish

McCloskey KP, Chapman KE, Chapuis L, McCormick MI, Radford AN, Simpson SD. Assessing and mitigating impacts of motorboat noise on nesting damselfish. Environmental Pollution [Internet]. 2020 ;266:115376. Available from: https://www.sciencedirect.com/science/article/pii/S0269749120360644?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Motorboats are a pervasive, growing source of anthropogenic noise in marine environments, with known impacts on fish physiology and behaviour. However, empirical evidence for the disruption of parental care remains scarce and stems predominantly from playback studies. Additionally, there is a paucity of experimental studies examining noise-mitigation strategies. We conducted two field experiments to investigate the effects of noise from real motorboats on the parental-care behaviours of a common coral-reef fish, the Ambon damselfish Pomacentrus amboinensis, which exhibits male-only egg care. When exposed to motorboat noise, we found that males exhibited vigilance behaviour 34% more often and spent 17% more time remaining vigilant, compared to an ambient-sound control. We then investigated nest defence in the presence of an introduced conspecific male intruder, incorporating a third noise treatment of altered motorboat-driving practice that was designed to mitigate noise exposure via speed and distance limitations. The males spent 22% less time interacting with the intruder and 154% more time sheltering during normal motorboat exposure compared to the ambient-sound control, with nest-defence levels in the mitigation treatment equivalent to those in ambient conditions. Our results reveal detrimental impacts of real motorboat noise on some aspects of parental care in fish, and successfully demonstrate the positive effects of an affordable, easily implemented mitigation strategy. We strongly advocate the integration of mitigation strategies into future experiments in this field, and the application of evidence-based policy in our increasingly noisy world.

Soundscape of green turtle foraging habitats in Fiji, South Pacific

Papale E, Prakash S, Singh S, Batibasaga A, Buscaino G, Piovano S. Soundscape of green turtle foraging habitats in Fiji, South Pacific Patterson HM. PLOS ONE [Internet]. 2020 ;15(8):e0236628. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236628
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The soundscape features of the marine environment provide crucial information about ecosystem health for many species, and they are defined by the local biological, geophysical, and anthropogenic components. In this study, we investigated the soundscape at green turtle neritic foraging habitats in Fiji, South Pacific, with the aims of characterizing the contribution of each component and of comparing the levels of acoustic pressure among sites with different abundances of sea turtles. Four sites were selected at two islands, and one hydrophone was deployed at each site. Generalized additive models highlighted that sound pressure levels (SPLs) at low frequencies (125–250 Hz) were especially affected by wind conditions, while at higher frequencies (>250 Hz) SPLs were mostly influenced by fish and crustacean acoustic activity. Higher abundances of green turtles were found at sites with the highest levels of SPLs and the highest number of acoustic emissions by fishes and crustaceans but were not related to maximum seagrass and macroalgae coverage, or the highest number of fish. The selected coastal habitats have negligible anthropogenic noise, thus this study informs physiological and behavioral studies of the acoustic signatures that sea turtles might target and provides a baseline against which potential impact of soundscape changes on sea turtle spatial abundance and distribution can be evaluated.

Vessel noise affects routine swimming and escape response of a coral reef fish

Jimenez LVelasquez, Fakan EP, McCormick MI. Vessel noise affects routine swimming and escape response of a coral reef fish Januchowski-Hartley FAndrew. PLOS ONE [Internet]. 2020 ;15(7):e0235742. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235742
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

An increasing number of studies have shown that anthropogenic noise can negatively affect aspects of the anti-predator behaviour of reef fishes, potentially affecting fitness and survival. However, it has been suggested that effects could differ among noise sources. The present study compared two common sources of anthropogenic noise and investigated its effects on behavioural traits critical for fish survival. In a tank-based experiment we examined the effects of noise from 4-stroke motorboats and ships (bulk carriers > 50,000 tonnes) on the routine swimming and escape response of a coral reef fish, the whitetail damselfish (Pomacentrus chrysurus). Both 4-stroke boat and ship noise playbacks affected the fast-start response and routine swimming of whitetail damselfish, however the magnitude of the effects differed. Fish exposed to ship noise moved shorter distances and responded more slowly (higher response latency) to the startle stimulus compared to individuals under the 4-stroke noise treatment. Our study suggests that 4-stroke and ship noise can affect activity and escape response of individuals to a simulated predation threat, potentially compromising their anti-predator behaviour.

Sleuthing with sound: Understanding vessel activity in marine protected areas using passive acoustic monitoring

Kline LR, DeAngelis AI, McBride C, Rodgers GG, Rowell TJ, Smith J, Stanley JA, Read AD, Van Parijs SM. Sleuthing with sound: Understanding vessel activity in marine protected areas using passive acoustic monitoring. Marine Policy [Internet]. 2020 ;120:104138. Available from: https://www.sciencedirect.com/science/article/pii/S0308597X19309005?dgcid=raven_sd_search_email
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Monitoring compliance and enforcing laws are integral to ensuring the success of marine protected areas (MPAs), but traditional monitoring techniques are costly and resource demanding. Three SoundTrap 300 recorders were deployed for one month between 1 July and September 12, 2018 to collect acoustic data in two marine parks off southeastern Australia: one recorder in Cod Grounds Marine Park (CGMP) and two in the Solitary Islands Marine Park National Park Zone (SIMP NPZ). Extractive activities such as fishing are not permitted in these zones. Raven Pro 2.0 was used to analyze data for vessel presence. Transmission loss equations for each site were generated using patrol boat GPS tracks and used to predict if acoustically recorded vessels were inside park boundaries based on received sound levels. In CGMP, 41 vessels were predicted within the park during the recording period; 34 vessels were predicted within the SIMP NPZ. Thursdays and Saturdays were identified as peak days for vessel presence in CGMP while Thursdays were the peak day in the SIMP NPZ. Most vessel activity at both locations took place between 06:00 and 17:00 AEST. Peak vessel presence in CGMP occurred at 09:00 AEST while the peak vessel presence in the SIMP NPZ occurred at 16:00 AEST. Approximately 12.7 h of vessel sounds were recorded within CGMP; approximately 3.8 h of vessel noise were recorded within the SIMP NPZ. Passive acoustic monitoring of vessel patterns in Australian Marine Parks has provided valuable insight to redirect compliance decisions on how to focus surveillance efforts.

The Potential to Improve the Sustainability of Pelagic Fisheries in the Northeast Atlantic by Incorporating Individual Fish Behavior Into Acoustic Sampling

Wassermann SN, Johnson MP. The Potential to Improve the Sustainability of Pelagic Fisheries in the Northeast Atlantic by Incorporating Individual Fish Behavior Into Acoustic Sampling. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00357/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1348443_45_Marine_20200609_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

With the increased uncertainty introduced through climate change and fishing pressure, having accurate estimates of fish biomass is essential for global ecosystem and economic health. Acoustic surveys are an efficient way to determine population size for pelagic species in the Northeast Atlantic (NEA), but acoustic population estimates still contain uncertainty and are difficult for some species. For example, Atlantic mackerel (Scomber scombrus) is one of the most valuable fisheries in the NEA and is not monitored acoustically, as mackerel lack the swim bladder that provides the strongest acoustic echo (target strength) at common assessment frequencies. For all pelagic species, and especially for mackerel, behavior is a source of variation in acoustic measurements and therefore in population estimates. Behavior is mediated by both extrinsic and intrinsic factors, such as the environment and the life history of the fish. In turn, behavior affects the density of the shoal and the tilt angle of the fish relative to the survey vessel, affecting their target strength, which affects the biomass estimate. Some fish may also undergo an anti-predator response to survey vessels, changing their behavior in response to the survey. Understanding these behaviors and incorporating them into acoustic stock assessment methods can improve the accuracy of population estimates. Individual-based models (IBM) of fish shoals provide a pathway for incorporating behavior into acoustic methods. IBMs have been used extensively to build theoretical models of fish shoals, but few have been successfully tested in lab or field conditions. As computational power and monitoring technology improve, modeling the collective behavior of pelagic fishes will be possible. Novel, interdisciplinary approaches to data collection and analysis will help translate theoretical IBMs to the fisheries science domain. Beyond acoustic stock assessments, this approach can be used to investigate knowledge gaps in the effects of fisheries-induced evolution and the potential for range shifts under climate change. Further work to synthesize existing models and incorporate field data will help determine how environmental, ecological, physiological, and anthropogenic factors, often affecting both behavior and acoustic surveying, are interconnected. Moving from theoretical models to practical applications will be a valuable tool in tackling the uncertainty that accompanies further fisheries exploitation and warming oceans.

Passive acoustic methods for tracking the 3D movements of small cetaceans around marine structures

Gillespie D, Palmer L, Macaulay J, Sparling C, Hastie G. Passive acoustic methods for tracking the 3D movements of small cetaceans around marine structures Halliday WDavid. PLOS ONE [Internet]. 2020 ;15(5):e0229058. Available from: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229058
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

A wide range of anthropogenic structures exist in the marine environment with the extent of these set to increase as the global offshore renewable energy industry grows. Many of these pose acute risks to marine wildlife; for example, tidal energy generators have the potential to injure or kill seals and small cetaceans through collisions with moving turbine parts. Information on fine scale behaviour of animals close to operational turbines is required to understand the likely impact of these new technologies. There are inherent challenges associated with measuring the underwater movements of marine animals which have, so far, limited data collection. Here, we describe the development and application of a system for monitoring the three-dimensional movements of cetaceans in the immediate vicinity of a subsea structure. The system comprises twelve hydrophones and software for the detection and localisation of vocal marine mammals. We present data demonstrating the systems practical performance during a deployment on an operational tidal turbine between October 2017 and October 2019. Three-dimensional locations of cetaceans were derived from the passive acoustic data using time of arrival differences on each hydrophone. Localisation accuracy was assessed with an artificial sound source at known locations and a refined method of error estimation is presented. Calibration trials show that the system can accurately localise sounds to 2m accuracy within 20m of the turbine but that localisations become highly inaccurate at distances greater than 35m. The system is currently being used to provide data on rates of encounters between cetaceans and the turbine and to provide high resolution tracking data for animals close to the turbine. These data can be used to inform stakeholders and regulators on the likely impact of tidal turbines on cetaceans.

Non-song Vocalizations of Humpback Whales in Western Australia

Recalde-Salas A, Erbe C, Kent CSalgado, Parsons M. Non-song Vocalizations of Humpback Whales in Western Australia. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00141/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1320398_45_Marine_20200505_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

This study presents non-song vocalizations of humpback whales (Megaptera novaeangliae) from two migratory areas off the Western Australian coast: Geographe Bay and Port Hedland. A total of 220 sounds were identified as non-song sounds in 193 h of recordings reviewed. Of those, 68 were measured and qualitatively classified into 17 groups using their spectral features. One group (HW-02) had a high level of variation in terms of spectral slope. However, further classification using statistical classification methods was not possible because of the small sample size. Non-song sound frequencies varied from 9 Hz to 6 kHz, with the majority of sounds under 200 Hz. The duration of non-song sounds varied between 0.09 and 3.59 s. Overall, the use of spectral features allowed general classification of humpback whale sounds in a low sample size scenario that was not conducive to using quantitative methods. However, for highly variable groups, quantitative statistical classification methods (e.g., random forests) are needed to improve classification accuracy. The identification and accurate classification of a species’ acoustic repertoire is key to effectively monitor population status using acoustic techniques and to better understand the vocal behavior of the species. The results of this study improve the monitoring of humpback whales by standardizing the classification of sounds and including them in the species’ repertoire. The inclusion of non-song sounds in passive acoustic monitoring of humpback whales will add females and calves to the detection counts of otherwise only singing males.

Seal Bomb Noise as a Potential Threat to Monterey Bay Harbor Porpoise

Simonis AE, Forney KA, Rankin S, Ryan J, Zhang Y, DeVogelaere A, Joseph J, Margolina T, Krumpel A, Baumann-Pickering S. Seal Bomb Noise as a Potential Threat to Monterey Bay Harbor Porpoise. Frontiers in Marine Science [Internet]. 2020 ;7. Available from: https://www.frontiersin.org/articles/10.3389/fmars.2020.00142/full?utm_source=F-AAE&utm_medium=EMLF&utm_campaign=MRK_1286267_45_Marine_20200331_arts_A
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Anthropogenic noise is a known threat to marine mammals. Decades of research have shown that harbor porpoises are particularly sensitive to anthropogenic noise, and geographic displacement is a common impact from noise exposure. Small, localized populations may be particularly vulnerable to impacts associated with displacement, as animals that are excluded from their primary habitat may have reduced foraging success and survival, or be exposed to increased threats of predation or bycatch. Seal bombs are underwater explosives used in purse seine fisheries to deter marine mammals during fishery operations. Pinnipeds are believed to be the primary target for seal bomb use, however there may be indirect impacts on harbor porpoises. Active purse seine fishing using seal bombs in the greater Monterey Bay area may, at times, span the entire range of the Monterey Bay harbor porpoise stock, which may lead to negative impacts for this population. In this contribution, we review anthropogenic noise as a threat to harbor porpoises, with a focus on the potential for impacts from seal bomb noise exposure in the Monterey Bay region.

Simulation of Ship Radiated Noise Field in Deep Sea Based on Statistical Characteristics of Sound Source

Zhang L, Meng CXia, Zhang MWei. Simulation of Ship Radiated Noise Field in Deep Sea Based on Statistical Characteristics of Sound Source. Procedia Computer Science [Internet]. 2020 ;166:104 - 110. Available from: https://www.sciencedirect.com/science/article/pii/S1877050920301514
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The radiated noise of a ship is mainly composed of a low-frequency line spectrum and a medium-high frequency broadband continuum spectrum. In the ocean, the low-frequency sound signal decays slowly, so the low-frequency line spectrum of ship radiated noise can be transmitted over long distances. Based on the statistical analysis method, the inherent source characteristics of radiated noise are obtained from the measured data in shallow sea waveguides. Different deep sea sound velocity distribution conditions, such as the northeastern Atlantic Ocean, the Norwegian Sea deep sea, the Norwegian sea surface channel and the polar regions, were selected, and the propagation characteristics of the low-frequency radiation noise field of the ship were simulated at a horizontal distance of 150 km. The effects of different sound velocity distributions on the propagation of low-frequency acoustic signals are obtained. The research results have important practical significance for the utilization of low-frequency radiation noise characteristics of ships in deep sea.

Pages

Subscribe to RSS - Soundscapes and Acoustics