Soundscapes and Acoustics

Responses of bottlenose dolphins and harbor porpoises to impact and vibration piling noise during harbor construction

Graham IM, Pirotta E, Merchant ND, Farcas A, Barton TR, Cheney B, Hastie GD, Thompson PM. Responses of bottlenose dolphins and harbor porpoises to impact and vibration piling noise during harbor construction. Ecosphere [Internet]. 2017 ;8(5):e01793. Available from: http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1793/full
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The development of risk assessments for the exposure of protected populations to noise from coastal construction is constrained by uncertainty over the nature and extent of marine mammal responses to man-made noise. Stakeholder concern often focuses on the potential for local displacement caused by impact piling, where piles are hammered into the seabed. To mitigate this threat, use of vibration piling, where piles are shaken into place with a vibratory hammer, is often encouraged due to presumed impact reduction. However, data on comparative responses of cetaceans to these different noise sources are lacking. We studied the responses of bottlenose dolphins and harbor porpoises to both impact and vibration pile driving noise during harbor construction works in northeast Scotland, using passive acoustic monitoring devices to record cetacean activity and noise recorders to measure and predict received noise levels. Local abundance and patterns of occurrence of bottlenose dolphins were also compared with a five-year baseline. The median peak-to-peak source level estimated for impact piling was 240 dB re 1 μPa (single-pulse sound exposure level [SEL] 198 dB re 1 μPa2 s), and the r.m.s. source level for vibration piling was 192 dB re 1 μPa. Predicted received broadband SEL values 812 m from the piling site were markedly lower due to high propagation loss: 133.4 dB re 1 μPa2 s (impact) and 128.9 dB re 1 μPa2 s (vibration). Bottlenose dolphins and harbor porpoises were not excluded from sites in the vicinity of impact piling or vibration piling; nevertheless, some small effects were detected. Bottlenose dolphins spent a reduced period of time in the vicinity of construction works during both impact and vibration piling. The probability of occurrence of both cetacean species was also slightly less during periods of vibration piling. This work provides developers and managers with the first evidence of the comparative effects of vibration and impact piling on small cetaceans, enabling more informed risk assessments, policy frameworks, and mitigation plans. In particular, our results emphasize the need for better understanding of noise levels and behavioral responses to vibration piling before recommending its use to mitigate impact piling.

Italy introduces pre and post operation monitoring phases for offshore seismic exploration activities

Fossati C, Mussi B, Tizzi R, Pavan G, Pace DS. Italy introduces pre and post operation monitoring phases for offshore seismic exploration activities. Marine Pollution Bulletin [Internet]. 2017 . Available from: http://www.sciencedirect.com/science/article/pii/S0025326X17304022
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Concern is growing that marine fauna can be affected by noise such as naval sonar, pile driving or geophysical surveys, among others. Literature reports a variety of animal reactions to human noise (from apparently null or negligible to strong). However, conclusive results on its effects on marine mammals at individual and population level are still lacking. In 2015, the Italian Environmental Impact Assessment Commission mandated seismic operators apply a standard scientific protocol comparing marine mammal presence before, during, and after offshore seismic survey. For 60 days before and after the survey, marine mammals are monitored using visual and acoustic methods. One or more acoustic autonomous recorders, depending on area size, must also be deployed throughout the three phases for continuous monitoring. Consistent data gathered from many surveys will enable robust statistical analysis of results. Diffusion of this monitoring method internationally would improve the study of far-reaching, intense, low frequency noise.

Potential for spatial displacement of Cook Inlet beluga whales by anthropogenic noise in critical habitat

Small RJ, Brost B, Hooten M, Castellote M, Mondragon J. Potential for spatial displacement of Cook Inlet beluga whales by anthropogenic noise in critical habitat. Endangered Species Research [Internet]. 2017 ;32:43 - 57. Available from: http://www.int-res.com/abstracts/esr/v32/p43-57/
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The population of beluga whales in Cook Inlet, Alaska, USA, declined by nearly half in the mid-1990s, primarily from an unsustainable harvest, and was listed as endangered in 2008. In 2014, abundance was ~340 whales, and the population trend during 1999-2014 was -1.3% yr-1. Cook Inlet beluga whales are particularly vulnerable to anthropogenic impacts, and noise that has the potential to reduce communication and echolocation range considerably has been documented in critical habitat; thus, noise was ranked as a high potential threat in the Cook Inlet beluga Recovery Plan. The current recovery strategy includes research on effects of threats potentially limiting recovery, and thus we examined the potential impact of anthropogenic noise in critical habitat, specifically, spatial displacement. Using a subset of data on anthropogenic noise and beluga detections from a 5 yr acoustic study, we evaluated the influence of noise events on beluga occupancy probability. We used occupancy models, which account for factors that affect detection probability when estimating occupancy, the first application of these models to examine the potential impacts of anthropogenic noise on marine mammal behavior. Results were inconclusive, primarily because beluga detections were relatively infrequent. Even though noise metrics (sound pressure level and noise duration) appeared in high-ranking models as covariates for occupancy probability, the data were insufficient to indicate better predictive ability beyond those models that only included environmental covariates. Future studies that implement protocols designed specifically for beluga occupancy will be most effective for accurately estimating the effect of noise on beluga displacement.

Underwater acoustic impacts of shipping management measures: Results from a social-ecological model of boat and whale movements in the St. Lawrence River Estuary (Canada)

Chion C, Lagrois D, Dupras J, Turgeon S, McQuinn IH, Michaud R, Ménard N, Parrott L. Underwater acoustic impacts of shipping management measures: Results from a social-ecological model of boat and whale movements in the St. Lawrence River Estuary (Canada). Ecological Modelling [Internet]. 2017 ;354:72 - 87. Available from: http://www.sciencedirect.com/science/article/pii/S0304380016305750
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

The recovery of whale species at risk requires the implementation of protection measures designed to mitigate the risks posed by various stressors. In the St. Lawrence Estuary (Canada), several whale species are threatened by navigation activities in various ways. Since 2013, seasonal voluntary ship strike mitigation measures, including a speed reduction area (SRA) and a no-go area, were implemented annually and largely adopted by the maritime industry to reduce the risks of lethal collisions with four species of baleen whales. While the endangered St. Lawrence beluga population is unlikely to be subject to collisions with large merchant ships, it is known to be negatively affected by vessel-generated underwater noise. To assess how these protection measures modify the beluga’s soundscape throughout their critical habitat, we implemented an underwater acoustic module within an existing agent-based model (3MTSim) of ship-whale movements and interactions in the St. Lawrence Estuary. We ran multiple simulations for two scenarios 1) without and 2) with the protection measures to compare the level of noise received by belugas before and after 2013. Overall, the simulations showed a statistically-significant 1.6% decrease in the total amount of noise received by belugas in their critical habitat following the implementation of the protection measures. Although slowing down ships reduces instantaneous radiated noise, it also increases the total amount of acoustic energy released in the environment by extending the time spent in the SRA. Accordingly, our simulations showed a 2.4% increase in the cumulative noise from shipping received by beluga in the SRA. Conversely, belugas located in the Upper Estuary, mostly females and calves, i.e., the most valuable individuals experienced a 5.4% reduction in the cumulative received level of shipping noise. Although refinements are required to improve the modelling of noise sources and propagation for finer scale projections in this complex nearshore environment, this agent-based modelling paradigm of 3MTSim proved informative for underwater acoustic impact assessments.

The not-so-silent world: Measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean

Haver SM, Klinck H, Nieukirk SL, Matsumoto H, Dziak RP, Miksis-Olds JL. The not-so-silent world: Measuring Arctic, Equatorial, and Antarctic soundscapes in the Atlantic Ocean. Deep Sea Research Part I: Oceanographic Research Papers [Internet]. 2017 . Available from: http://www.sciencedirect.com/science/article/pii/S0967063716303867
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $39.95
Type: Journal Article

Anthropogenic noise in the ocean has been shown, under certain conditions, to influence the behavior and health of marine mammals. Noise from human activities may interfere with the low-frequency acoustic communication of many Mysticete species, including blue (Balaenoptera musculus) and fin whales (B. physalus). This study analyzed three soundscapes in the Atlantic Ocean, from the Arctic to the Antarctic, to document ambient sound. For 16 months beginning in August 2009, acoustic data (15 – 100 Hz) were collected in the Fram Strait (79 °N, 5.5 °E), near Ascension Island (8 °S, 14.4 °W), and in the Bransfield Strait (62 °S, 55.5 °W). Results indicate (1) the highest overall sound levels were measured in the equatorial Atlantic, in association with high levels of seismic oil and gas exploration, (2) compared to the tropics, ambient sound levels in polar regions are more seasonally variable, and (3) individual elements beget the seasonal and annual variability of ambient sound levels in high latitudes. Understanding how the variability of natural and man-made contributors to sound may elicit differences in ocean soundscapes is essential to developing strategies to manage and conserve marine ecosystems and animals.

Assessing the risk of chronic shipping noise to baleen whales off Southern California, USA

Redfern JV, Hatch LT, Caldow C, DeAngelis ML, Gedamke J, Hastings S, Henderson L, McKenna MF, Moore TJ, Porter MB. Assessing the risk of chronic shipping noise to baleen whales off Southern California, USA. Endangered Species Research [Internet]. 2017 ;32:153 - 167. Available from: http://www.int-res.com/abstracts/esr/v32/p153-167/
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Low-frequency noise that is part of the acoustic environment for baleen whales has increased in many areas of the Northeast Pacific Ocean that contain whale habitat. We conducted a spatially explicit risk assessment of noise from commercial shipping to blue, fin, and humpback whale habitats in Southern California waters and explored how noise is affected by several place-based management techniques: a National Marine Sanctuary, an Area to be Avoided (ATBA), and a Traffic Separation Scheme (TSS). We used shipping data to model noise at 2 frequencies that are part of the acoustic environment for these species and capture the variable contributions from shipping to noise. Predicted noise levels in Southern California waters suggest high, region-wide exposure to shipping noise. Our risk assessment identified several areas where the acoustic environment may be degraded for blue, fin, and humpback whales because their habitat overlaps with areas of elevated noise from shipping traffic and 2 places where blue and humpback whale feeding areas overlap with lower predicted noise levels. One of the places with lower predicted noise occurs in the Channel Islands National Marine Sanctuary (CINMS). Noise has not been directly managed within the CINMS; instead, reduced noise in this portion of the CINMS is likely an ancillary benefit of the ATBA surrounding most of the Sanctuary. Areas of elevated noise in the CINMS also occur, primarily where a TSS intersects the Sanctuary’s boundaries. Our risk assessment framework can be used to evaluate how shipping traffic affects acoustic environments and explore management strategies.

Acoustically monitoring the Hawai‘i longline fishery for interactions with false killer whales

Bayless AR, Oleson EM, Baumann-Pickering S, Simonis AE, Marchetti J, Martin S, Wiggins SM. Acoustically monitoring the Hawai‘i longline fishery for interactions with false killer whales. Fisheries Research [Internet]. 2017 ;190:122 - 131. Available from: http://www.sciencedirect.com/science/article/pii/S0165783617300346
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

False killer whales (Pseudorca crassidens) feed primarily on several species of large pelagic fish, species that are also targeted by the Hawai‘i-permitted commercial deep-set longline fishery. False killer whales have been known to approach fishing lines in an attempt to procure bait or catch from the lines, a behavior known as depredation. This behavior can lead to the hooking or entanglement of an animal, which currently exceeds sustainable levels for pelagic false killer whales in Hawai‘i. Passive acoustic monitoring (PAM) was used to record false killer whales near longline fishing gear to investigate the timing, rate, and spatial extent of false killer whale occurrence. Acoustic data were collected using small autonomous recorders modified for deployment on the mainline of longline fishing gear. A total of 90 fishing sets were acoustically monitored in 2013 and 2014 on a chartered longline vessel using up to five acoustic recorders deployed throughout the fishing gear. Of the 102 odontocete click and/or whistle bouts detected on 55 sets, 26 bouts detected on 19 different fishing sets were classified as false killer whales with high or medium confidence based on either whistle classification, click classification, or both. The timing of false killer whale acoustic presence near the gear was related to the timing of fishing activities, with 57% of the false killer whale bouts occurring while gear was being hauled, with 50% of those bouts occurring during the first third of the haul. During three fishing sets, false killer whales were detected on more than one recorder, and in all cases the whales were recorded on instruments farther from the fishing vessel as the haul proceeded. Only three of the 19 sets with acoustically-confirmed false killer whale presence showed signs of bait or catch damage by marine mammals, which may relate to the difficulty of reporting depredation. PAM has proven to be a relatively inexpensive and efficient method for monitoring the Hawai‘i longline fishery for interactions with false killer whales.

Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys

Abadi SH, Tolstoy M, Wilcock WSD. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys. PLOS ONE [Internet]. 2017 ;12(2):e0171115. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171115
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus GLangseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.

Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales

Shabangu FW, Yemane D, Stafford KM, Ensor P, Findlay KP. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales. PLOS ONE [Internet]. 2017 ;12(2):e0172705. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172705
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is important in improving the management and conservation of this highly depleted species.

Effects of marine vessel management on the underwater acoustic environment of Glacier Bay National Park, AK

McKenna MF, Gabriele C, Kipple B. Effects of marine vessel management on the underwater acoustic environment of Glacier Bay National Park, AK. Ocean & Coastal Management [Internet]. 2017 ;139:102 - 112. Available from: http://www.sciencedirect.com/science/article/pii/S0964569117300534
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

To protect the underwater acoustic environment and the marine mammals that depend upon it, Glacier Bay National Park implements marine vessel quotas, speed regulations, and routing restrictions in biologically important areas. Here, we characterize the underwater acoustic environment to quantify changes in conditions related to vessel management actions. Analysis of hourly 30-second acoustic samples obtained from a seafloor hydrophone included manual (aural and visual) identification of physical, biological, and human-made acoustic sources and measuring received sound pressure levels. A total of 10,659 30-second acoustic samples collected in 2000, 2001, 2007 and 2008 were analyzed. By quantifying the sources, occurrence, and characteristics of underwater sound we gained a new understanding of how the underwater acoustic environment relates to vessel management. For example, the occurrence of noise from large marine vessels (e.g. cruise ships) decreased despite an increase in the vessel quotas and use-days, likely due to changes in the timing of cruise ship entries. Our work documented the occurrence of biologically important humpback whale and harbor seal vocalizations; the frequency of occurrence of these vocalizations gives an indication of Glacier Bay's importance for these species and seasonality of calls documents the times of year at which a pristine acoustic environment would most benefit each species. These first descriptions of acoustic conditions in a protected coastal habitat indicate that both regulations and vessel behavior independent of regulations have discernible effects on the acoustic environment. Quantitatively describing these changes is a crucial first step toward protection of this important underwater habitat.

Pages

Subscribe to RSS - Soundscapes and Acoustics