Soundscapes and Acoustics

Assessing the risk of chronic shipping noise to baleen whales off Southern California, USA

Redfern JV, Hatch LT, Caldow C, DeAngelis ML, Gedamke J, Hastings S, Henderson L, McKenna MF, Moore TJ, Porter MB. Assessing the risk of chronic shipping noise to baleen whales off Southern California, USA. Endangered Species Research [Internet]. 2017 ;32:153 - 167. Available from: http://www.int-res.com/abstracts/esr/v32/p153-167/
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Low-frequency noise that is part of the acoustic environment for baleen whales has increased in many areas of the Northeast Pacific Ocean that contain whale habitat. We conducted a spatially explicit risk assessment of noise from commercial shipping to blue, fin, and humpback whale habitats in Southern California waters and explored how noise is affected by several place-based management techniques: a National Marine Sanctuary, an Area to be Avoided (ATBA), and a Traffic Separation Scheme (TSS). We used shipping data to model noise at 2 frequencies that are part of the acoustic environment for these species and capture the variable contributions from shipping to noise. Predicted noise levels in Southern California waters suggest high, region-wide exposure to shipping noise. Our risk assessment identified several areas where the acoustic environment may be degraded for blue, fin, and humpback whales because their habitat overlaps with areas of elevated noise from shipping traffic and 2 places where blue and humpback whale feeding areas overlap with lower predicted noise levels. One of the places with lower predicted noise occurs in the Channel Islands National Marine Sanctuary (CINMS). Noise has not been directly managed within the CINMS; instead, reduced noise in this portion of the CINMS is likely an ancillary benefit of the ATBA surrounding most of the Sanctuary. Areas of elevated noise in the CINMS also occur, primarily where a TSS intersects the Sanctuary’s boundaries. Our risk assessment framework can be used to evaluate how shipping traffic affects acoustic environments and explore management strategies.

Acoustically monitoring the Hawai‘i longline fishery for interactions with false killer whales

Bayless AR, Oleson EM, Baumann-Pickering S, Simonis AE, Marchetti J, Martin S, Wiggins SM. Acoustically monitoring the Hawai‘i longline fishery for interactions with false killer whales. Fisheries Research [Internet]. 2017 ;190:122 - 131. Available from: http://www.sciencedirect.com/science/article/pii/S0165783617300346
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

False killer whales (Pseudorca crassidens) feed primarily on several species of large pelagic fish, species that are also targeted by the Hawai‘i-permitted commercial deep-set longline fishery. False killer whales have been known to approach fishing lines in an attempt to procure bait or catch from the lines, a behavior known as depredation. This behavior can lead to the hooking or entanglement of an animal, which currently exceeds sustainable levels for pelagic false killer whales in Hawai‘i. Passive acoustic monitoring (PAM) was used to record false killer whales near longline fishing gear to investigate the timing, rate, and spatial extent of false killer whale occurrence. Acoustic data were collected using small autonomous recorders modified for deployment on the mainline of longline fishing gear. A total of 90 fishing sets were acoustically monitored in 2013 and 2014 on a chartered longline vessel using up to five acoustic recorders deployed throughout the fishing gear. Of the 102 odontocete click and/or whistle bouts detected on 55 sets, 26 bouts detected on 19 different fishing sets were classified as false killer whales with high or medium confidence based on either whistle classification, click classification, or both. The timing of false killer whale acoustic presence near the gear was related to the timing of fishing activities, with 57% of the false killer whale bouts occurring while gear was being hauled, with 50% of those bouts occurring during the first third of the haul. During three fishing sets, false killer whales were detected on more than one recorder, and in all cases the whales were recorded on instruments farther from the fishing vessel as the haul proceeded. Only three of the 19 sets with acoustically-confirmed false killer whale presence showed signs of bait or catch damage by marine mammals, which may relate to the difficulty of reporting depredation. PAM has proven to be a relatively inexpensive and efficient method for monitoring the Hawai‘i longline fishery for interactions with false killer whales.

Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys

Abadi SH, Tolstoy M, Wilcock WSD. Estimating the location of baleen whale calls using dual streamers to support mitigation procedures in seismic reflection surveys. PLOS ONE [Internet]. 2017 ;12(2):e0171115. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171115
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

In order to mitigate against possible impacts of seismic surveys on baleen whales it is important to know as much as possible about the presence of whales within the vicinity of seismic operations. This study expands on previous work that analyzes single seismic streamer data to locate nearby calling baleen whales with a grid search method that utilizes the propagation angles and relative arrival times of received signals along the streamer. Three dimensional seismic reflection surveys use multiple towed hydrophone arrays for imaging the structure beneath the seafloor, providing an opportunity to significantly improve the uncertainty associated with streamer-generated call locations. All seismic surveys utilizing airguns conduct visual marine mammal monitoring surveys concurrent with the experiment, with powering-down of seismic source if a marine mammal is observed within the exposure zone. This study utilizes data from power-down periods of a seismic experiment conducted with two 8-km long seismic hydrophone arrays by the R/V Marcus GLangseth near Alaska in summer 2011. Simulated and experiment data demonstrate that a single streamer can be utilized to resolve left-right ambiguity because the streamer is rarely perfectly straight in a field setting, but dual streamers provides significantly improved locations. Both methods represent a dramatic improvement over the existing Passive Acoustic Monitoring (PAM) system for detecting low frequency baleen whale calls, with ~60 calls detected utilizing the seismic streamers, zero of which were detected using the current R/V Langseth PAM system. Furthermore, this method has the potential to be utilized not only for improving mitigation processes, but also for studying baleen whale behavior within the vicinity of seismic operations.

Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales

Shabangu FW, Yemane D, Stafford KM, Ensor P, Findlay KP. Modelling the effects of environmental conditions on the acoustic occurrence and behaviour of Antarctic blue whales. PLOS ONE [Internet]. 2017 ;12(2):e0172705. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0172705
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Harvested to perilously low numbers by commercial whaling during the past century, the large scale response of Antarctic blue whales Balaenoptera musculus intermedia to environmental variability is poorly understood. This study uses acoustic data collected from 586 sonobuoys deployed in the austral summers of 1997 through 2009, south of 38°S, coupled with visual observations of blue whales during the IWC SOWER line-transect surveys. The characteristic Z-call and D-call of Antarctic blue whales were detected using an automated detection template and visual verification method. Using a random forest model, we showed the environmental preferences pattern, spatial occurrence and acoustic behaviour of Antarctic blue whales. Distance to the southern boundary of the Antarctic Circumpolar Current (SBACC), latitude and distance from the nearest Antarctic shores were the main geographic predictors of blue whale call occurrence. Satellite-derived sea surface height, sea surface temperature, and productivity (chlorophyll-a) were the most important environmental predictors of blue whale call occurrence. Call rates of D-calls were strongly predicted by the location of the SBACC, latitude and visually detected number of whales in an area while call rates of Z-call were predicted by the SBACC, latitude and longitude. Satellite-derived sea surface height, wind stress, wind direction, water depth, sea surface temperatures, chlorophyll-a and wind speed were important environmental predictors of blue whale call rates in the Southern Ocean. Blue whale call occurrence and call rates varied significantly in response to inter-annual and long term variability of those environmental predictors. Our results identify the response of Antarctic blue whales to inter-annual variability in environmental conditions and highlighted potential suitable habitats for this population. Such emerging knowledge about the acoustic behaviour, environmental and habitat preferences of Antarctic blue whales is important in improving the management and conservation of this highly depleted species.

Effects of marine vessel management on the underwater acoustic environment of Glacier Bay National Park, AK

McKenna MF, Gabriele C, Kipple B. Effects of marine vessel management on the underwater acoustic environment of Glacier Bay National Park, AK. Ocean & Coastal Management [Internet]. 2017 ;139:102 - 112. Available from: http://www.sciencedirect.com/science/article/pii/S0964569117300534
Freely available?: 
No
Summary available?: 
No
Approximate cost to purchase or rent this item from the publisher: 
US $35.95
Type: Journal Article

To protect the underwater acoustic environment and the marine mammals that depend upon it, Glacier Bay National Park implements marine vessel quotas, speed regulations, and routing restrictions in biologically important areas. Here, we characterize the underwater acoustic environment to quantify changes in conditions related to vessel management actions. Analysis of hourly 30-second acoustic samples obtained from a seafloor hydrophone included manual (aural and visual) identification of physical, biological, and human-made acoustic sources and measuring received sound pressure levels. A total of 10,659 30-second acoustic samples collected in 2000, 2001, 2007 and 2008 were analyzed. By quantifying the sources, occurrence, and characteristics of underwater sound we gained a new understanding of how the underwater acoustic environment relates to vessel management. For example, the occurrence of noise from large marine vessels (e.g. cruise ships) decreased despite an increase in the vessel quotas and use-days, likely due to changes in the timing of cruise ship entries. Our work documented the occurrence of biologically important humpback whale and harbor seal vocalizations; the frequency of occurrence of these vocalizations gives an indication of Glacier Bay's importance for these species and seasonality of calls documents the times of year at which a pristine acoustic environment would most benefit each species. These first descriptions of acoustic conditions in a protected coastal habitat indicate that both regulations and vessel behavior independent of regulations have discernible effects on the acoustic environment. Quantitatively describing these changes is a crucial first step toward protection of this important underwater habitat.

Seismic survey noise disrupted fish use of a temperate reef

Paxton AB, J. Taylor C, Nowacek DP, Dale J, Cole E, Voss CM, Peterson CH. Seismic survey noise disrupted fish use of a temperate reef. Marine Policy [Internet]. 2017 ;78:68 - 73. Available from: http://www.sciencedirect.com/science/article/pii/S0308597X16307382
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

Marine seismic surveying discerns subsurface seafloor geology, indicative of, for example, petroleum deposits, by emitting high-intensity, low-frequency impulsive sounds. Impacts on fish are uncertain. Opportunistic monitoring of acoustic signatures from a seismic survey on the inner continental shelf of North Carolina, USA, revealed noise exceeding 170 dB re 1μ Pa peak on two temperate reefs federally designated as Essential Fish Habitat 0.7 and 6.5 km from the survey ship path. Videos recorded fish abundance and behavior on a nearby third reef 7.9 km from the seismic track. During seismic surveying, reef-fish abundance declined by 78% during evening hours when fish habitat use was highest on the previous three days without seismic noise. Despite absence of videos documenting fish returns after seismic surveying, the significant reduction in fish occupation of the reef represents disruption to daily pattern. This numerical response confirms that conservation concerns associated with seismic surveying are realistic.

Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds

Castro JM, M. Amorim CP, Oliveira AP, Gonçalves EJ, Munday PL, Simpson SD, Faria AM. Painted Goby Larvae under High-CO2 Fail to Recognize Reef Sounds. PLOS ONE [Internet]. 2017 ;12(1):e0170838. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0170838
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Atmospheric CO2 levels have been increasing at an unprecedented rate due to anthropogenic activity. Consequently, ocean pCO2 is increasing and pH decreasing, affecting marine life, including fish. For many coastal marine fishes, selection of the adult habitat occurs at the end of the pelagic larval phase. Fish larvae use a range of sensory cues, including sound, for locating settlement habitat. This study tested the effect of elevated CO2 on the ability of settlement-stage temperate fish to use auditory cues from adult coastal reef habitats. Wild late larval stages of painted goby (Pomatoschistus pictus) were exposed to control pCO2 (532 μatm, pH 8.06) and high pCO2 (1503 μatm, pH 7.66) conditions, likely to occur in nearshore regions subjected to upwelling events by the end of the century, and tested in an auditory choice chamber for their preference or avoidance to nighttime reef recordings. Fish reared in control pCO2 conditions discriminated reef soundscapes and were attracted by reef recordings. This behaviour changed in fish reared in the high CO2 conditions, with settlement-stage larvae strongly avoiding reef recordings. This study provides evidence that ocean acidification might affect the auditory responses of larval stages of temperate reef fish species, with potentially significant impacts on their survival.

Temporal patterns in the soundscape of the shallow waters of a Mediterranean marine protected area

Buscaino G, Ceraulo M, Pieretti N, Corrias V, Farina A, Filiciotto F, Maccarrone V, Grammauta R, Caruso F, Giuseppe A, et al. Temporal patterns in the soundscape of the shallow waters of a Mediterranean marine protected area. Scientific Reports [Internet]. 2016 ;6:34230. Available from: http://www.nature.com/articles/srep34230
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

The study of marine soundscapes is an emerging field of research that contributes important information about biological compositions and environmental conditions. The seasonal and circadian soundscape trends of a marine protected area (MPA) in the Mediterranean Sea have been studied for one year using an autonomous acoustic recorder. Frequencies less than 1 kHz are dominated by noise generated by waves and are louder during the winter; conversely, higher frequencies (4–96 kHz) are dominated by snapping shrimp, which increase their acoustic activity at night during the summer. Fish choruses, below 2 kHz, characterize the soundscape at sunset during the summer. Because there are 13 vessel passages per hour on average, causing acoustic interference with fish choruses 46% of the time, this MPA cannot be considered to be protected from noise. On the basis of the high seasonal variability of the soundscape components, this study proposes a one-year acoustic monitoring protocol using the soundscape methodology approach and discusses the concept of MPA size.

Acoustic indices provide information on the status of coral reefs: an example from Moorea Island in the South Pacific

Bertucci F, Parmentier E, Lecellier G, Hawkins AD, Lecchini D. Acoustic indices provide information on the status of coral reefs: an example from Moorea Island in the South Pacific. Scientific Reports [Internet]. 2016 ;6:33326. Available from: http://www.nature.com/articles/srep33326
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Different marine habitats are characterised by different soundscapes. How or which differences may be representative of the habitat characteristics and/or community structure remains however to be explored. A growing project in passive acoustics is to find a way to use soundscapes to have information on the habitat and on its changes. In this study we have successfully tested the potential of two acoustic indices, i.e. the average sound pressure level and the acoustic complexity index based on the frequency spectrum. Inside and outside marine protected areas of Moorea Island (French Polynesia), sound pressure level was positively correlated with the characteristics of the substratum and acoustic complexity was positively correlated with fish diversity. It clearly shows soundscape can be used to evaluate the acoustic features of marine protected areas, which presented a significantly higher ambient sound pressure level and were more acoustically complex than non-protected areas. This study further emphasizes the importance of acoustics as a tool in the monitoring of marine environments and in the elaboration and management of future conservation plans.

Avoidance of wind farms by harbour seals is limited to pile driving activities

Russell DJF, Hastie GD, Thompson D, Janik VM, Hammond PS, Scott-Hayward LAS, Matthiopoulos J, Jones EL, McConnell BJ. Avoidance of wind farms by harbour seals is limited to pile driving activities. Journal of Applied Ecology [Internet]. 2016 . Available from: http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12678/abstract
Freely available?: 
Yes
Summary available?: 
Yes
Type: Journal Article
  1. As part of global efforts to reduce dependence on carbon-based energy sources there has been a rapid increase in the installation of renewable energy devices. The installation and operation of these devices can result in conflicts with wildlife. In the marine environment, mammals may avoid wind farms that are under construction or operating. Such avoidance may lead to more time spent travelling or displacement from key habitats. A paucity of data on at-sea movements of marine mammals around wind farms limits our understanding of the nature of their potential impacts.
  2. Here, we present the results of a telemetry study on harbour seals Phoca vitulina in The Wash, south-east England, an area where wind farms are being constructed using impact pile driving. We investigated whether seals avoid wind farms during operation, construction in its entirety, or during piling activity. The study was carried out using historical telemetry data collected prior to any wind farm development and telemetry data collected in 2012 during the construction of one wind farm and the operation of another.
  3. Within an operational wind farm, there was a close-to-significant increase in seal usage compared to prior to wind farm development. However, the wind farm was at the edge of a large area of increased usage, so the presence of the wind farm was unlikely to be the cause.
  4. There was no significant displacement during construction as a whole. However, during piling, seal usage (abundance) was significantly reduced up to 25 km from the piling activity; within 25 km of the centre of the wind farm, there was a 19 to 83% (95% confidence intervals) decrease in usage compared to during breaks in piling, equating to a mean estimated displacement of 440 individuals. This amounts to significant displacement starting from predicted received levels of between 166 and 178 dB re 1 μPa(p-p). Displacement was limited to piling activity; within 2 h of cessation of pile driving, seals were distributed as per the non-piling scenario.
  5. Synthesis and applications. Our spatial and temporal quantification of avoidance of wind farms by harbour seals is critical to reduce uncertainty and increase robustness in environmental impact assessments of future developments. Specifically, the results will allow policymakers to produce industry guidance on the likelihood of displacement of seals in response to pile driving; the relationship between sound levels and avoidance rates; and the duration of any avoidance, thus allowing far more accurate environmental assessments to be carried out during the consenting process. Further, our results can be used to inform mitigation strategies in terms of both the sound levels likely to cause displacement and what temporal patterns of piling would minimize the magnitude of the energetic impacts of displacement.

Pages

Subscribe to RSS - Soundscapes and Acoustics