Soundscapes and Acoustics

Seismic surveys and marine turtles: An underestimated global threat?

Nelms SE, Piniak WED, Weir CR, Godley BJ. Seismic surveys and marine turtles: An underestimated global threat?. Biological Conservation [Internet]. 2016 ;193:49 - 65. Available from: http://www.sciencedirect.com/science/article/pii/S0006320715301452
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Seismic surveys are widely used in marine geophysical oil and gas exploration, employing airguns to produce sound-waves capable of penetrating the sea floor. In recent years, concerns have been raised over the biological impacts of this activity, particularly for marine mammals. While exploration occurs in the waters of at least fifty countries where marine turtles are present, the degree of threat posed by seismic surveys is almost entirely unknown. To investigate this issue, a mixed-methods approach involving a systematic review, policy comparison and stakeholder analysis was employed and recommendations for future research were identified. This study found that turtles have been largely neglected both in terms of research and their inclusion in mitigation policies. Few studies have investigated the potential for seismic surveys to cause behavioural changes or physical damage, indicating a crucial knowledge gap. Possible ramifications for turtles include exclusion from critical habitats, damage to hearing and entanglement in seismic survey equipment. Despite this, the policy comparison revealed that only three countries worldwide currently include turtles in their seismic mitigation guidelines and very few of the measures they specify are based on scientific evidence or proven effectiveness. Opinions obtained from stakeholder groups further highlight the urgent need for directed, in-depth empirical research to better inform and develop appropriate mitigation strategies. As seismic surveying is becoming increasingly widespread and frequent, it is important and timely that we evaluate the extent to which marine turtles, a taxon of global conservation concern, may be affected.

Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua)

Nedelec SL, Simpson SD, Morley EL, Nedelec B, Radford AN. Impacts of regular and random noise on the behaviour, growth and development of larval Atlantic cod (Gadus morhua). Proceedings of the Royal Society B: Biological Sciences [Internet]. 2015 ;282(1817). Available from: http://rspb.royalsocietypublishing.org/content/282/1817/20151943.abstract
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Anthropogenic noise impacts behaviour and physiology in many species, but responses could change with repeat exposures. As repeat exposures can vary in regularity, identifying regimes with less impact is important for regulation. We use a 16-day split-brood experiment to compare effects of regular and random acoustic noise (playbacks of recordings of ships), relative to ambient-noise controls, on behaviour, growth and development of larval Atlantic cod (Gadus morhua). Short-term noise caused startle responses in newly hatched fish, irrespective of rearing noise. Two days of both regular and random noise regimes reduced growth, while regular noise led to faster yolk sac use. After 16 days, growth in all three sound treatments converged, although fish exposed to regular noise had lower body width–length ratios. Larvae with lower body width–length ratios were easier to catch in a predator-avoidance experiment. Our results demonstrate that the timing of acoustic disturbances can impact survival-related measures during development. Much current work focuses on sound levels, but future studies should consider the role of noise regularity and its importance for noise management and mitigation measures.

Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management

Williams R, Wright AJ, Ashe E, Blight LK, Bruintjes R, Canessa R, Clark CW, Cullis-Suzuki S, Dakin DT, Erbe C, et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean & Coastal Management [Internet]. 2015 ;115:17 - 24. Available from: http://www.sciencedirect.com/science/article/pii/S096456911500160X
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Anthropogenic underwater noise is now recognized as a world-wide problem, and recent studies have shown a broad range of negative effects in a variety of taxa. Underwater noise from shipping is increasingly recognized as a significant and pervasive pollutant with the potential to impact marine ecosystems on a global scale. We reviewed six regional case studies as examples of recent research and management activities relating to ocean noise in a variety of taxonomic groups, locations, and approaches. However, as no six projects could ever cover all taxa, sites and noise sources, a brief bibliometric analysis places these case studies into the broader historical and topical context of the peer-reviewed ocean noise literature as a whole. The case studies highlighted emerging knowledge of impacts, including the ways that non-injurious effects can still accumulate at the population level, and detailed approaches to guide ocean noise management. They build a compelling case that a number of anthropogenic noise types can affect a variety of marine taxa. Meanwhile, the bibliometric analyses revealed an increasing diversity of ocean noise topics covered and journal outlets since the 1940s. This could be seen in terms of both the expansion of the literature from more physical interests to ecological impacts of noise, management and policy, and consideration of a widening range of taxa. However, if our scientific knowledge base is ever to get ahead of the curve of rapid industrialization of the ocean, we are going to have to identify naïve populations and relatively pristine seas, and construct mechanistic models, so that we can predict impacts before they occur, and guide effective mitigation for the most vulnerable populations.

Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals

Hermannsen L, Tougaard J, Beedholm K, Nabe-Nielsen J, Madsen PTeglberg. Characteristics and Propagation of Airgun Pulses in Shallow Water with Implications for Effects on Small Marine Mammals. PLOS ONE [Internet]. 2015 ;10(7):e0133436. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0133436
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters.

Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals

Tougaard J. Underwater Noise from a Wave Energy Converter Is Unlikely to Affect Marine Mammals. PLOS ONE [Internet]. 2015 ;10(7):e0132391. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0132391
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Underwater noise was recorded from the Wavestar wave energy converter; a full-scale hydraulic point absorber, placed on a jack-up rig on the Danish North Sea coast. Noise was recorded 25 m from the converter with an autonomous recording unit (10 Hz to 20 kHz bandwidth). Median sound pressure levels (Leq) in third-octave bands during operation of the converter were 106–109 dB re. 1 μPa in the range 125–250 Hz, 1–2 dB above ambient noise levels (statistically significant). Outside the range 125–250 Hz the noise from the converter was undetectable above the ambient noise. During start and stop of the converter a more powerful tone at 150 Hz (sound pressure level (Leq) 121–125 dB re 1 μPa) was easily detectable. This tone likely originated from the hydraulic pump which was used to lower the absorbers into the water and lift them out of the water at shutdown. Noise levels from the operating wave converter were so low that they would barely be audible to marine mammals and the likelihood of negative impact from the noise appears minimal. A likely explanation for the low noise emissions is the construction of the converter where all moving parts, except for the absorbers themselves, are placed above water on a jack-up rig. The results may thus not be directly transferable to other wave converter designs but do demonstrate that it is possible to harness wave energy without noise pollution to the marine environment.

First indications that northern bottlenose whales are sensitive to behavioural disturbance from anthropogenic noise

Miller PJO, Kvadsheim PH, Lam FPA, Tyack PL, Cure C, DeRuiter SL, Kleivane L, Sivle LD, van IJsselmuide SP, Visser F, et al. First indications that northern bottlenose whales are sensitive to behavioural disturbance from anthropogenic noise. Royal Society Open Science [Internet]. 2015 ;2(6). Available from: http://rsos.royalsocietypublishing.org/cgi/doi/10.1098/rsos.140484
Freely available?: 
Yes
Summary available?: 
No
Type: Journal Article

Although northern bottlenose whales were the most heavily hunted beaked whale, we have little information about this species in its remote habitat of the North Atlantic Ocean. Underwater anthropogenic noise and disruption of their natural habitat may be major threats, given the sensitivity of other beaked whales to such noise disturbance. We attached dataloggers to 13 northern bottlenose whales and compared their natural sounds and movements to those of one individual exposed to escalating levels of 1–2 kHz upsweep naval sonar signals. At a received sound pressure level (SPL) of 98 dB re 1 μPa, the whale turned to approach the sound source, but at a received SPL of 107 dB re 1 μPa, the whale began moving in an unusually straight course and then made a near 180° turn away from the source, and performed the longest and deepest dive (94 min, 2339 m) recorded for this species. Animal movement parameters differed significantly from baseline for more than 7 h until the tag fell off 33–36 km away. No clicks were emitted during the response period, indicating cessation of normal echolocation-based foraging. A sharp decline in both acoustic and visual detections of conspecifics after exposure suggests other whales in the area responded similarly. Though more data are needed, our results indicate high sensitivity of this species to acoustic disturbance, with consequent risk from marine industrialization and naval activity.

Environmental constraints drive the partitioning of the soundscape in fishes

Ruppé L, Clément G, Herrel A, Ballesta L, Décamps T, Kéver L, Parmentier E. Environmental constraints drive the partitioning of the soundscape in fishes. Proceedings of the National Academy of Sciences [Internet]. 2015 :201424667. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1424667112
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

The underwater environment is more and more being depicted as particularly noisy, and the inventory of calling fishes is continuously increasing. However, it currently remains unknown how species share the soundscape and are able to communicate without misinterpreting the messages. Different mechanisms of interference avoidance have been documented in birds, mammals, and frogs, but little is known about interference avoidance in fishes. How fish thus partition the soundscape underwater remains unknown, as acoustic communication and its organization have never been studied at the level of fish communities. In this study, passive acoustic recordings were used to inventory sounds produced in a fish community (120 m depth) in an attempt to understand how different species partition the acoustic environment. We uncovered an important diversity of fish sounds, and 16 of the 37 different sounds recorded were sufficiently abundant to use in a quantitative analysis. We show that sonic activity allows a clear distinction between a diurnal and a nocturnal group of fishes. Moreover, frequencies of signals made during the day overlap, whereas there is a clear distinction between the different representatives of the nocturnal callers because of a lack of overlap in sound frequency. This first demonstration, to our knowledge, of interference avoidance in a fish community can be understood by the way sounds are used. In diurnal species, sounds are mostly used to support visual display, whereas nocturnal species are generally deprived of visual cues, resulting in acoustic constraints being more important.

Habitat quality affects sound production and likely distance of detection on coral reefs

Piercy JJB, Codling EA, Hill AJ, Smith DJ, Simpson SD. Habitat quality affects sound production and likely distance of detection on coral reefs. Marine Ecology Progress Series [Internet]. 2014 ;516:35 - 47. Available from: http://www.int-res.com/abstracts/meps/v516/p35-47/
Freely available?: 
No
Summary available?: 
No
Type: Journal Article

The interwoven nature of habitats and their acoustic fingerprints (soundscapes) is being increasingly recognized as a key component of animal ecology. Natural soundscapes are crucial for orientation in many different taxa when seeking suitable breeding grounds or settlement habitats. In the marine environment, coral reef noise is an important navigation cue for settling reef fish larvae and is thus a possible driver of reef population dynamics. We explored reef noise across a gradient of reef qualities, tested sound propagation models against field recordings and combined them with fish audiograms to demonstrate the importance of reef quality in determining which reefs larvae are likely to detect. We found that higher-quality reefs were significantly louder and richer in acoustic events (transient content) than degraded reefs, and observed that sound propagated farther with less attenuation than predicted by classic models. We discuss how zones of detection of poor-quality reefs could be reduced by over an order of magnitude compared to healthy reefs. The present study provides new perspectives on the far reaching effects habitat degradation may have on organisms that utilize soundscapes for orientation towards or away from coral reefs, and highlights the value of sound recordings as a cost-effective reef survey and monitoring tool.

Pages

Subscribe to RSS - Soundscapes and Acoustics