OpenChannels Literature Update Archives

Subscribe to OpenChannels Newsletters

Would you like to subscribe to the OpenChannels Weekly Update or weekly Literature Update? Simply create a free OpenChannels Member Account and check the boxes for the Weekly Update and/or Literature Update newsletters.


Coastal Resources Economics and Ecosystem Valuation

For the week of 04 November 2019

Greetings OpenChannels Community Members,

Water has published, Coastal Resources Economics and Ecosystem Valuation.

Abstract: The papers in this special issue provide new insights into ongoing research to value coastal and marine ecosystem services, and offer meaningful information for policymakers and resource managers about the economic significance of coastal resources for planning, restoration, and damage assessment. Study areas encompass a broad geographic scope from the Gulf of Mexico in the United States, to the Caribbean, the European Union, Australia, and Southeast Asia. The focus of these papers ranges from theoretical perspectives on linkages between ecosystem services and resource management, to the actual integration of valuation information in coastal and marine resource policy decisions, and to the application of economic valuation methods to specific coastal and marine resource management problems. We hope readers will appreciate these new contributions to the growing literature on coastal and marine resource ecosystem services valuation.

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: allie [at] octogroup.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-11-06.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

Gaps in Protection of Important Ocean Areas

For the week of 28 October 2019

Greetings OpenChannels Community Members,

Frontiers in Marine Science has published, Gaps in Protection of Important Ocean Areas: A Spatial Meta-Analysis of Ten Global Mapping Initiatives.

Abstract: To safeguard biodiversity effectively, marine protected areas (MPAs) should be sited using the best available science. There are numerous ongoing United Nations and non-governmental initiatives to map globally important marine areas. The criteria used by these initiatives vary, resulting in contradictions in the areas identified as important. Our analysis is the first to overlay these initiatives, quantify consensus, and conduct gap analyses at the global scale. We found that 55% of the ocean has been identified as important by one or more initiatives, and that individual areas have been identified by as many as seven overlapping initiatives. Using our overlay map and data on current MPA coverage, we highlight gaps in protection of important areas of the ocean. We considered any area identified by two to four initiatives to be of moderate consensus. Over 14% of the ocean fell under this category and most of this area (88%) is not yet protected. The largest concentrations of medium-consensus areas without protection were found in the Caribbean Sea, Madagascar and the southern tip of Africa, the Mediterranean Sea, and the Coral Triangle. Areas of high consensus (identified by five to seven initiatives) were almost always within MPAs, but their no-take status was often unreported. We found that nearly every marine province and nearly every exclusive economic zone contained area that has been identified as important but is not yet protected. Much of the identified area lies within contiguous stretches of >100,000 km2; it is unrealistic to expect that all this area be protected. Nonetheless, our results on areas of consensus provide initial insight into opportunities for further ocean protection.

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: allie [at] octogroup.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-10-30.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

A decision-making framework to reduce the risk of collisions between ships and whales

For the week of 21 October 2019

Greetings OpenChannels Community Members,

Marine Policy has published, A decision-making framework to reduce the risk of collisions between ships and whales.

Abstract: Ship strikes are one of the main human-induced threats to whale survival. A variety of measures have been used or proposed to reduce collisions and subsequent mortality of whales. These include operational measures, such as mandatory speed reduction, or technical ones, such as detection tools. There is, however, a lack of a systematic approach to assessing the various measures that can mitigate the risk of ship collisions with whales. In this paper, a holistic approach is proposed to evaluate mitigation measures based on a risk assessment framework that has been adopted by the International Maritime Organization (IMO), namely the Formal Safety Assessment (FSA). Formal Safety Assessment (FSA) is “a rational and systematic process for assessing the risk related to maritime safety and the protection of the marine environment and for evaluating the costs and benefits of IMO's options for reducing these risks”. The paper conceptualizes the use of a systematic risk assessment methodology, namely the FSA, to assess measures to reduce the risk of collisions between ships and whales.

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: allie [at] octogroup.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-10-23.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

Bycatch Quotas, Risk Pools, and Cooperation in the Pacific Whiting Fishery

For the week of 14 October 2019

Greetings OpenChannels Community Members,

Frontiers in Marine Science has published, Bycatch Quotas, Risk Pools, and Cooperation in the Pacific Whiting Fishery.

Abstract: The United States Pacific whiting fishery uses mid-water trawl gear to target Pacific whiting off the United States West Coast. The fishery is subject to sector-specific bycatch caps for Chinook salmon (Oncorhynchus tshawytscha) and several rockfish species (widow rockfish–Sebastes entomelas, canary rockfish-Sebastes pinniger, darkblotched rockfish–Sebastes crameri, Pacific Ocean Perch (POP)-Sebastes alutus, and yelloweye rockfish-Sebastes ruberrimus). Chinook bycatch can include fish from endangered populations and rockfish stocks were recovering from severe depletion though most are now rebuilt. Catch of these species is rare and uncertain, making it difficult for vessels to meet strict individual performance standards. Consequently the industry has developed risk pools in which bycatch quota for a group of vessels is pooled, but vessels are required to follow practices that minimize bycatch risk including temporal and spatial fishing restrictions. The risk pools also require vessels to share information about bycatch hotspots enabling a cooperative approach to avoid bycatch based on real-time information. In this article we discuss the formation and structure of these risk pools, the bycatch reduction strategies they apply, and outcomes in the fishery in terms of observed bycatch avoidance behavior and utilization of target species. The analysis demonstrates the ability of these fishers to keep bycatch within aggregate limits and keep individual vessels from being tied up due to quota overages.

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: abrown [at] openchannels.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-10-16.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

Coasts in Peril? A Shoreline Health Perspective

For the week of 07 October 2019

Greetings OpenChannels Community Members,

Frontiers in Earth Science has published, Coasts in Peril? A Shoreline Health Perspective.

Abstract: Most assessments of coastal vulnerability are undertaken from the perspective of the risk posed to humans, their property and activities. This anthropocentric view is based on widespread public perception (a) that coastal change is primarily a hazard to property and infrastructure and (b) that sea defenses (whether soft or hard) are required to mitigate and eliminate coastal hazards. From the perspective of coastal ecosystems, such a view is both perverse and damaging. In this paper we present an alternative approach to coastal assessment that centers on the physical integrity of the coast and its associated ecosystems both now and in the near-future. The shoreline health approach represents a new paradigm for coastal management and is intended to provide a much-needed ecosystem perspective. Its premise is to categorize coasts on the degree to which their ability to function morphodynamically has been compromised by human intervention. We present an expert assessment approach involving five categories that range from “Good Health” (with “Health Warning” and “Minor Wounds” sub-divisions), through “Minor Injury,” “Major Injury,” “On Life Support” to “Deceased.” We illustrate the concept using tabulated examples of each category from cliffed, clastic and delta coasts and demonstrate its utility through two applications. This approach has the potential to quantify the degree to which coastal ecosystems have been damaged and to focus attention on the cumulative impact of human activities on coastal ecosystems.

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: abrown [at] openchannels.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-10-09.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

The importance of migratory connectivity for global ocean policy

For the week of 30 September 2019

Greetings OpenChannels Community Members,

Proceedings of the Royal Society has published, The importance of migratory connectivity for global ocean policy.

Abstract: The distributions of migratory species in the ocean span local, national and international jurisdictions. Across these ecologically interconnected regions, migratory marine species interact with anthropogenic stressors throughout their lives. Migratory connectivity, the geographical linking of individuals and populations throughout their migratory cycles, influences how spatial and temporal dynamics of stressors affect migratory animals and scale up to influence population abundance, distribution and species persistence. Population declines of many migratory marine species have led to calls for connectivity knowledge, especially insights from animal tracking studies, to be more systematically and synthetically incorporated into decision-making. Inclusion of migratory connectivity in the design of conservation and management measures is critical to ensure they are appropriate for the level of risk associated with various degrees of connectivity. Three mechanisms exist to incorporate migratory connectivity into international marine policy which guides conservation implementation: site-selection criteria, network design criteria and policy recommendations. Here, we review the concept of migratory connectivity and its use in international policy, and describe the Migratory Connectivity in the Ocean system, a migratory connectivity evidence-base for the ocean. We propose that without such collaboration focused on migratory connectivity, efforts to effectively conserve these critical species across jurisdictions will have limited effect.

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: abrown [at] openchannels.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-10-02.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

The Dynamics and Impact of Ocean Acidification and Hypoxia

For the week of 23 September 2019

Greetings OpenChannels Community Members,

Oceanography has published, The Dynamics and Impact of Ocean Acidification and Hypoxia: Insights from Sustained Investigations in the Northern California Current Large Marine Ecosystem.

Abstract: Coastal upwelling ecosystems around the world are defined by wind-generated currents that bring deep, nutrient-rich waters to the surface ocean where they fuel exceptionally productive food webs. These ecosystems are also now understood to share a common vulnerability to ocean acidification and hypoxia (OAH). In the California Current Large Marine Ecosystem (CCLME), reports of marine life die-offs by fishers and resource managers triggered research that led to an understanding of the risks posed by hypoxia. Similarly, unprecedented losses from shellfish hatcheries led to novel insights into the coastal expression of ocean acidification. Partnership for Interdisciplinary Studies of Coastal Oceans (PISCO) scientists and other researchers in the CCLME responded to the rise of OAH with new ocean observations and experiments. This work revealed insights into the expression of OAH as coupled environmental stressors, their temporal and spatial variability, and impacts on species, ecological communities, and fisheries. Sustained investigations also deepened the understanding of connections between climate change and the intensification of hypoxia, and are beginning to inform the ecological and eco-evolutionary processes that can structure responses to the progression of ocean acidification and other pathways of global change. Moreover, because the severity of the die-offs and hatchery failures and the subsequent scientific understanding combined to galvanize public attention, these scientific advances have fostered policy advances. Across the CCLME, policymakers are now translating the evolving scientific understanding of OAH into new management actions.

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: abrown [at] openchannels.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-09-25.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

An atlas of protected hydrothermal vents

For the week of 16 September 2019

Greetings OpenChannels Community Members,

Marine Policy has published, An atlas of protected hydrothermal vents.

Abstract: Active hydrothermal vents are valued worldwide because of the importance of their biodiversity and their influence on scientific discovery and insight about life on Earth and elsewhere in the Universe. There exist at least 20 areas and area networks with conservation measures for deep-sea hydrothermal vents, established by 12 countries and three Regional Fisheries Management Organisations, in six oceanic regions. Area-based management tools (ABMT) implemented by these countries illustrate multiple categories and means of protection and management of these rare and vulnerable habitats. Some ABMTs only regulate bottom and deep-trawling fisheries activities, others manage additional activities such as mining, scientific research, and bioprospecting, while still others protect active hydrothermal vents through broad conservation interventions. This atlas summarizes the “who”, “what”, “when”, “where” of protected hydrothermal vents worldwide and underscores recognition of the importance of hydrothermal-vent ecosystems by coastal States.

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: abrown [at] openchannels.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-09-18.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

Categorizing global MPAs: A cluster analysis approach

For the week of 09 September 2019

Greetings OpenChannels Community Members,

Marine Policy has published, Categorizing global MPAs: A cluster analysis approach.

Abstract: Marine Protected Areas (MPAs) are a widely used and flexible policy tool to help preserve marine biodiversity. They range in size and governance complexity from small communally managed MPAs, to massive MPAs on the High Seas managed by multinational organizations. As of August 2018, the Atlas of Marine Protection (MPAtlas.org) had catalogued information on over 12,000 Marine Protected Areas. We analyzed this global database to determine groups of MPAs whose characteristics best distinguished the diversity of MPA attributes globally, based upon our comprehensive sample. Groups were identified by pairing a Principal Components Analysis (PCA) with a k-means cluster analysis using five variables; age of MPA, area of MPA, no-take area within MPA, latitude of the MPA's center, and Human Development Index (HDI) of the host country. Seven statistically distinct groups of MPAs emerged from this analysis and we describe and discuss the potential implications of their respective characteristics for MPA management. The analysis yields important insights into patterns and characteristics of MPAs around the world, including clusters of especially old MPAs (greater than 25 and 66 years of age), clusters distributed across nations with higher (HDI ≥ 0.827) or lower (HDI ≤ 0.827) levels of development, and majority no-take MPAs. Our findings also include statistical verification of Large Scale Marine Protected Areas (LSMPAs, approximately >180,000km2) and a sub-class of LSMPA's we call “Giant MPAs” (GMPAs, approximately >1,000,000km2). As a secondary outcome, future research may use the clusters identified in this paper to track variability in MPA performance indicators across clusters (e.g., biodiversity preservation/restoration, fish biomass) and thereby identify relationships between cluster and performance outcomes. MPA management can also be improved by creating communication networks that connect similarly clustered MPAs for sharing common challenges and best practices.

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: abrown [at] openchannels.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-09-11.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

Ocean Climate Monitoring

For the week of 02 September 2019

Greetings OpenChannels Community Members,

Frontiers in Marine Science has published, Ocean Climate Monitoring.

Abstract: Measuring ocean physics and atmospheric conditions at the sea-surface has been taking place for decades in our world’s oceans. Enhancing R&D technologies developed in Federal and academic institutions and laboratories such as WHOI’s Vector Averaging Current Meter (VACM, 1970s) and NOAA – PMEL’s: Autonomous Temperature Line Acquisition System (ATLAS, 1980s) as example, in situ ocean measurements and real-time telemetry for data processing and dissemination from remote areas of oceans and seas are now common place. A transition of this “ocean monitoring” technology has occurred with additional support from individual and group innovative efforts in the field of ocean instrumentation. As a result, long-term monitoring of ocean processes and changes has become more accessible to the research community at large. Here; we discuss a “Hybrid” air-sea interaction deep-sea monitoring system that has been developed in the private sector to mirror ocean-climate community data streams and has been successfully deployed on three basin-scaled programs in the Indian Ocean (RAMA, First Institute of Oceanography, FIO, China), the Andaman Sea (MOMSEI, Monsoon Onset Monitoring, FIO) and the Pacific Ocean (China’s Institute of Oceanology, Academy of Sciences (IOCAS) research in the western tropical Pacific). This application is a base to build upon as new sensors are developed and increased sampling at higher resolutions is required. Surface vehicles measure the surface, with some profiling available. Water column density sampling is still a much-needed measurement within the Ocean Climate Monitoring community. The “Hybrid” is a multidisciplinary tool to integrate new biological and biogeochemical sensors for continued interaction studies of the physical processes of our oceans. This application can also be used at FLUX sites to enhance the Argo Program, telemetry applications and docking stations for autonomous vehicles such as sail-drones, gliders and wave riders for enhancement and contribution to the Global Tropical Moored Buoy Array (GTMBA), Global Ocean Observing System (GOOS), Global Climate Observing System (GCOS), and the Global Earth Observing System of Systems (GEOS).

As always, if we've missed anything, please feel free to let us know. You may simply reply to this message, or you may email Allie directly at: abrown [at] openchannels.org.

You can read everything (not just the free stuff) we have found this week at https://www.openchannels.org/literature-update/2019-09-04.

Additionally, you can browse literature by the week we've added it at https://www.openchannels.org/literature-by-week.

Thank you for being part of the OpenChannels Community,
– Allie Brown, Raye Evrard, and the rest of the OpenChannels Team

Pages