The ‘presentist bias’ in time-series data: Implications for fisheries science and policy

Dirk Zellera,⁎, Daniel Paulyb

a Sea Around Us – Indian Ocean, School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
b Sea Around Us, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

A B S T R A C T

The bias in catch time series data that occurs when improvements in fisheries catch reporting systems (e.g., consideration of a previously unmonitored fishery, or region) lead to an increase in current catches without the corresponding past catches being corrected retroactively, here called ‘presentist bias’ is described, and two examples, pertaining to Mozambique and Tanzania are given. This bias has the effect of generating catch time series at the aggregate that appear ‘stable’ or increasing when in fact catches are declining over time, with potentially serious consequences for the assessment of the status of national fisheries, or in interpreting the global landings data disseminated by the FAO. The presentist bias can be compensated for by retroactive national data corrections as done, e.g., through catch reconstructions.

1. Introduction

Like many other scientific, economic and policy endeavours, fisheries science uses time-series data as part of investigations and analyses, and derives both scientific conclusions and policy recommendations from such data. What if the gradual improvements of the data collection systems underlying these data, covering more fisheries over time generated increases of reported catches, without retroactive corrections of earlier data? One can infer that this would lead to a time-series bias, which would affect inferences on catch trends. This type of bias is defined and labelled here as ‘presentist bias’, and its occurrence in the reported fisheries catch data of several countries is illustrated. This bias is inadvertently built-in the history, development and evolution of national and global data collection systems, but is generally overlooked or ignored.

1.1. Fisheries data

One of the most basic and fundamental types of fisheries data are time-series of the catches taken by national fisheries \cite{1,2}. These data are collected or estimated by nearly all countries in the world, usually by their fisheries departments or national statistics agencies, and are used for national fisheries assessments, and management and policy purposes \cite{3}. Here, we define such data as ‘official data’ or ‘officially reported data’, in contrast to ‘reconstructed data’. Furthermore, we define the term ‘statistics’ more broadly than many governmental or inter-governmental organizations, e.g., the OECD defines ‘statistical data’ as “data from a survey or administrative source used to produce statistics” (https://stats.oecd.org/glossary/detail.asp?ID=2543). We define ‘statistics’ (as in ‘catch statistics’) as equivalent to the term ‘data’ in the more broadly accepted scientific manner, namely as “the practice or science of collecting, analysing and interpreting numerical data in large quantities”. We also define ‘catch’ as the sum of both ‘landed catch’ (i.e., landings) and ‘discarded catch’ (i.e., discards) \cite{4}. In line with standard data practice of the Food and Agriculture Organization (FAO) of the United Nations, we treat ‘catch’ as being ‘wet-weight’ or ‘whole weight’ catch, i.e., not processed or product weight \cite{4}.

These official data are also requested, assembled and harmonized annually by the FAO which disseminates them to the global community. These national and (in aggregated form) global official, reported datasets are essentially time-series of fisheries catches (actually they are landings data, as discards are explicitly excluded from consideration, see \cite{5}) by fishing country, year and taxon, and the globally assembled data are presented by FAO on behalf of the countries by a small number of very large statistical areas (19 marine areas covering all ocean basins, plus 7 terrestrial areas; www.fao.org/3/a-az126e.pdf). While some of these areas have some data by subareas, this spatially more detailed coverage is often incomplete.

Important in the present context is that the global data assembled and reported by FAO on behalf of countries are analyzed every two years by staff of the FAO for presentation as part of their widely distributed “State of World Fisheries and Aquaculture” report (SOFIA, most

⁎ Corresponding author.
E-mail address: dirk.zeller@uwa.edu.au (D. Zeller).

https://doi.org/10.1016/j.marpol.2018.01.015
Received 22 September 2017; Received in revised form 14 January 2018; Accepted 15 January 2018
Available online 03 February 2018
0308-597X/ © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
recent issue, [6]), which is timed to coincide with the biennial meeting of the “Committee on Fisheries” (COFI). This committee is the only UN-level, inter-governmental forum where international fisheries issues can be examined and discussed, often leading to important recommendations or even global agreements [7,8].

Thus, SOFIA and the underlying FAO data (reported by FAO on behalf of member countries) form a key information tool that influences national, regional and international fisheries policy developments, as well as informing global funding decisions by the international community, development aid agencies and international NGOs. It thus be-hoves the international scientific and policy community to be aware if the underlying data may have consistent problems associated with them, especially if any such problem leads to a fundamental bias that impacts catch trends, which [9], a FAO Fishery Statistician rightly sees as key in the interpretation of the data.

1.2. Catch reconstructions

Catch reconstructions have become an important component of the Sea Around Us research initiative. The earliest reconstructions were commissioned by the US Western Pacific Regional Fishery Management Council [10–13] and were intended to account for obviously missing catch data, such as fisheries sectors that were largely or completely omitted from official data collection/reporting systems (e.g., subsistence fishing, [14]). Later reconstructions, which eventually covered all maritime countries in the world, and their overseas territories, also emphasized recreational fisheries [15], assumed or demonstrated illegal fishing [16,17] and discarded catches [5]. The outcome of this decade-long endeavour by a team of over 300 collaborating scientists from around the world was not only a likely more accurate volume of catch (i.e., closer to the unknown true catch volumes), but more im-portantly a different trend in global catches than suggested by officially reported statistics [18,19].

A large and growing number of peer-reviewed reconstruction studies are being published in the scientific literature ([3,14,15,20–24], all listed at www.seaaroundus.org/articles), contributing to and resulting in increased use of reconstructed data, e.g., by the Ocean Health Index [25,26] and the Environmental Performance Index [27], both examined and monitored closely by many countries; by UN affiliated organizations and groups such as the Biodiversity Indicators Partnership (www. bipindicators.net) as part of indicator requests of the Convention on Biological Diversity (CBD) and other biodiversity-related conventions, for the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), for reporting on the UN Sustainable Development Goals, and for use by national and regional governments; as well as by other global studies, e.g., on human nutrition [28,29]. Some criticism has been levied at the globally reconstructed catch data of the Sea Around Us. These criticisms were either directed at details of individual reconstructions [30,31], or took issue with novel approaches to aid in estimation [32,33]. All these criticisms were examined, and either addressed or refuted [34,35]. Also, some worried about the perceived ‘uncertainty’ associated with estimates of unreported data, despite officially reported statistics (all without their uncertainty ever being assessed or reported) also largely consisting of ‘estimates’ [36–38].

Thus, much focus was aimed at the methods and details used to address the fundamental under-reporting in official statistics of most countries, rather than the underreporting itself, or the potential impact of improvements in data collection systems over time on time-series catch data. With few exceptions [37,39,40], this under-reporting by official data is the result of most countries unfortunately not having the financial or technical resources to monitor and report on all their fisheries (e.g., large subsistence sectors on Pacific islands, [14]), or making deliberate choices to not report to FAO on certain fisheries components (e.g., the domestically well monitored but internationally unreported recreational catches in the USA, [41]). Obviously, this leads to differences between officially reported and reconstructed data (which incorporate official reported data); indeed, this was, jointly with the decision to include clearly-labelled discards in all reconstructed catch data [5], the main reason for reconstructing fisheries catches in the first place.

2. ‘Presentist bias’

Interestingly, these various critiques missed the data bias which should be considered a major point of concern about officially reported catch time-series. What is now termed ‘presentist bias’ is an inadvertent by-product of the often intense and laudable efforts of most countries, often commendably aided and supported by FAO, to improve their national data collection systems over time. Essentially, a ‘presentist bias’ occurs when an improvement in an official catch reporting system (e.g., consideration of a previously unmonitored fishery, sector, fleet, gear or region) leads to an increase in reported catches for more recent time periods without the corresponding past (unmonitored) catches being corrected for retroactively. The presentist bias thus over-emphasizes the present vis-à-vis the past, and it generates an often subtle, but consistent bias over time, due to the commendable efforts of countries to improve the quality of their data collection systems over time. It needs to be emphasized that this is inadvertent and not deliber-

The statistical reporting systems of countries are subjected to pre-sentist bias when improvements account for a growing share of actual catches, e.g., by adding new or improving existing data collection ef-forts for previously non-sampled or unmonitored fisheries sectors or components. Crucially in the present context, however, countries do these improvements for data going forward in time without making retroactive corrections for the previous under-reporting (or non-re-porting) of such catches in earlier years and decades. It should be ac-knowledged that FAO has previously indicated this point [9], and does seem to encourage countries to do retroactive corrections. However, such corrections, if they are made, rarely go far enough back in time, mainly due to perceived data ‘quality’ or ‘reliability’ concerns. In cases where retroactive corrections are comprehensive back in time, ob-viously the reported data no longer contain a presentist bias, and the present argument becomes moot. However, most corrections do not go back far enough to remove this bias, as will be illustrated by the example of Tanzania below. This can then lead to inconsistent historic baselines and the illusion of stable or even increasing catch trends when none occur, even in the face of actual declines [19,36,37].

The existence of such unintentional, but structurally deeply em-bedded data omissions over time was first pointed out on page 3 of [19] as a “gradually increasing incorporation of artisanal and other small-scale catches in the officially reported data presented by FAO on behalf of countries ...”, but was first clearly emphasized in [36]. Below is an il-lustration of this presentist bias through examples.

The purpose here is not to point fingers, as the existence of this bias is an inadvertent by-product of important improvement efforts for data collection systems, which in themselves are a worthy and important cause. Rather, the point is to draw attention to this issue, and encourage countries to retroactively correct for the entirety of this bias, which can be easily achieved via in-depth corrections of past data, e.g., through data reconstructions. Retroactive data corrections are commonly prac-tised with many national datasets, and accepted and supported by FAO if they come from national reporting agencies [6,38]. The Sea Around Us is also willing to engage with countries that wish to address this data bias, or other missing data issues, and improve their historical national catch data [36], something that is already happening in some countries that are open to the concept and concerns of time-series data [15]. It needs to be clearly re-emphasized here (as was done previously else-where; e.g., [4]) that reconstructions always contain data estimates, with accompanying uncertainty that at times can be higher than the uncertainty around official reported catch data (official reported
statistics also consist of estimates, with their own unacknowledged uncertainty; [36,37]). If not done carefully, catch data reconstructions may introduce potentially different sets of biases (although we are currently not aware of any), and thus are always open to corrections, changes and improvements, if better information becomes available.

3. Examples of ‘presentist bias’

3.1. Mozambique

Mozambique is one of the poorest countries in the world, and, following independence from colonial Portugal in 1975, suffered through many years of civil war (1977–1992). While the economic development is currently accelerating, much of the economy and livelihoods remain firmly based on agriculture and fisheries, much of it on a small-scale subsistence or artisanal basis [42–44]. For earlier time periods, the small-scale sector was essentially absent from reported data, as focus was solely on the limited industrial and semi-industrial fisheries, assumed to have been reported to FAO by the colonial administration on behalf of Mozambique. Thus, historical reported data substantially underestimated actual catches in Mozambique for a long time [45].

Continued absence of small-scale data was also encouraged by the apparent lack of interest in such data by FAO staff for a long time (Rudy van der Elst, ORL, pers. comm., in [46]). Starting in the early 2000s, however, Mozambique made concerted efforts (supported by international NGOs, notably WWF) to create a data sampling and reporting scheme for estimating small-scale catches [47,48], resulting in substantially higher catches appearing almost overnight in official reported data.

For example, the 2004 officially reported data provided an 800% increase in small-scale catches compared to the previous year, clearly the result of the improvements in the data sampling and reporting systems, and not actual changes in fisheries catches from one year to the next (Fig. 1A). A catch reconstruction for Mozambique was undertaken a decade ago [46] which examined and addressed this historical data issue (Fig. 1B), and was published in the peer-reviewed literature shortly thereafter [42]. This was followed by further data corrections and refinements through collaborative studies that involved staff from the National Fisheries Institute (Instituto Nacional de Investigação Pesqueira) of Mozambique [43,44]. This body of work clearly documented that historically, total catches in Mozambique peaked in the 1980s (largely due to the effects of civil war driven coastal migration leading to massive increases in coastal fishing pressure and subsequent overfishing), and declined strongly thereafter (Fig. 1C). Surprisingly, to this day FAO does not seem to have used this well-documented knowledge to actively work with Mozambique on comprehensively correcting historical data prior to the 2000s. Currently, official data as reported by FAO on behalf of Mozambique (as of FAO data release 2015) have not been corrected in any form for this clear case of the presentist bias for years prior to the early 2000s, resulting in unrealistic and erroneous reported data for pre-2000 periods. This makes FAO statistics for Mozambique unsuitable for time-series trend analysis (Fig. 1A versus 1 C).

3.2. Tanzania

Tanzania essentially consists of two regions, the mainland (historically ‘Tanganyika’) and the island group around and including Zanzibar. While both shared the same colonial history over the last 100+ years (first German, then British), they gained independence separately in 1961 and 1963, but merged into one country, the United Republic of Tanzania in 1964. However, the historical separation into two regions seems to continue to haunt fisheries management and national (and by extension international) fisheries data systems, as clearly documented by the Tanzanian catch reconstruction [42,49,50]. While Tanzanian fisheries are dominated by the extensive freshwater fisheries in Lake Victoria, marine fisheries also developed, both industrial-scale fisheries (e.g., for shrimp), as well as subsistence and small-scale commercial fisheries (i.e., artisanal) that have been feeding coastal and island communities for centuries.

As in many developing countries, the official catch data collection and reporting system in Tanzania experienced substantial challenges, including missing data for the colonial periods [51] as well as incomplete data for more recent time periods [52,53]. The detailed examination during the original catch reconstruction conducted in the mid-2000 [50] revealed for the first time that catch data for Zanzibar were entirely missing from the data reported by FAO on behalf of Tanzania (Fig. 2A). This was thought to be due to the political history of Tanzania, as both mainland and Zanzibar islands each have separate and essentially autonomous institutional and legal structures for managing and accounting for fisheries, and thus have separate systems...
Tanzania (mainland) and Zanzibar present an image of a considerable and sudden increase in marine catches in the early 2000s, rather than the more gradual growth in catches as determined through the reconstruction (Fig. 2C). Hence, even if this case of presentist bias does not lead to a distinct change in time-series trend (as is the case for Mozambique above), the existence of the presentist bias can lead to subtle misinterpretation of data and hence erroneous conclusions.

Several other examples of the existence of the presentist bias in official reported data could be presented here [54-58]. However, the above two cases will hopefully suffice to demonstrate the principles and potential consequences of not addressing this time-series data bias.

Some may argue that anyone using fisheries data would (or should) know about these time-series limitations, or that this bias occurs only in a few countries, or that this bias is usually small and can be neglected. However, firstly, international datasets such as those assembled by FAO on behalf of the global community are widely utilized by what may be called ‘non-country’ and ‘non-specialist’ users (e.g., international NGOs, charitable foundations, marine scientists etc.) who generally will not know about the specifics of individual country data or may use multiple country datasets; secondly, these official data are being used by FAO in SOFIA [6], a widely used and appreciated document that provides trend information on global fisheries, which contain this time-series bias and are thus misleading [36,37]; and thirdly, ‘small’ or ‘minor’ issues have the potential to cause rather large and important effects once aggregated in a global total, as is indeed clearly and unambiguously the case for the trend in global fisheries catches [18,19].

4. Conclusions

A commonly heard comment among many fisheries scientists is that more recent data which are used for assessments are better, therefore there is no need to bother with correcting data for periods often many decades ago. However, as has now been demonstrated globally [19], as well as regionally [14] and locally [42], not accounting for the presentist bias over an entire reported data history (i.e., back to 1950 in the case of data reported by FAO on behalf of countries) almost invariably leads to misinterpretation of fisheries trends. This was unfortunately demonstrated for global catch data in the most recent SOFIA [6], which claimed stability in global fisheries catches, but did not account for the trend-altering impact of the presentist bias on global time series trends as was pointed out by [36,37]. Not addressing this bias can contribute to erroneous and shifting baselines [59].

Formal stock assessments often try and use data in addition to catch data, and it is worth noting that:

Firstly, fishing effort data and independent survey data are often used in formal stock assessments when they are available and deemed suitable. However, what the reader needs to consider is that such data are often even more incomplete than catch data, both in what they include and time coverage. Many countries do not have any or very limited effort data for anything other than some major fleets or gear types, thus their use introduces a new set of potential bias if used without detailed (e.g., reconstructed) corrections of the effort data. Fisheries independent surveys of sufficient detail and quality to assist stock assessments are also very rare outside of developed countries and are often financially beyond the resources of most developing countries. Thus, for many places in the world, unfortunately catch data is all they have in sufficient detail to be somewhat representative of total fisheries. There are so-called data-poor methods for assessment [60] that allow what can be called first-order assessments to be undertaken, but they too require at the very least comprehensive time series of catches, with good taxonomic resolution.

Secondly, statistical correction methods do exist to help work around issues of presentist bias in stock assessments, and are (hopefully) being used, despite being analytically challenging. More importantly, however, using such methods requires awareness, knowledge and acknowledgement of the existence of the presentist bias in each

![Fig. 2](image-url)
case in the first place…. which is a major problem as most assessment staff have no idea if it exists, in what parts of the data it exists, or what its impact may be. In essence, without conducting the equivalent of ‘reconstruction-type’ investigations into historical data gaps to determine where such a presentist bias exists in each case, the assessment staff would not know where and when to apply the stock assessment correction methods.

Therefore, for official, national catch statistics to more accurately reflect historical patterns and trends in fisheries catches, any existing presentist bias needs correcting as best as possible for the entire time period of comprehensive international statistics, i.e., back to 1950. Ultimately, theonus is on countries themselves, who need to address this core data issue.

The first step is obviously to recognize and acknowledge the existence of this bias, and the substantial influence it can have on time-series data. It needs emphasizing that the presentist bias is generally an inadvertent and incidental by-product of the well-intentioned and worthwhile efforts by countries to improve their data systems over time. Thus, there is no deliberate malice by countries in creating this data problem.

Following recognition, the second step is to obviously do something about it. The only way to accomplish this is to retroactively fill the data gaps created by this bias through best estimates of these ‘missing’ catches, ideally using the now established and extensively documented catch reconstruction approach ([4,12,61], see also the detailed technical reconstruction reports for each country at www.seaaroundus.org).

Finally, once these time-series data corrections have been implemented in national data systems, countries need to formally request from FAO that it undertake retroactive data corrections and data replacements of existing FAO data in the FAO’s databases, for the entire time period back to 1950. Unless countries officially request such changes, FAO is unlikely to undertake them, given the constraints of their mandate. Fortunately, this only needs to be done once, as future iteration of FAO data will reflect past data corrections requested by member countries.

The Sea Around Us teams at the University of British Columbia and the University of Western Australia are always willing and interested in working with countries that wish to address these and similar data issues and thereby improve their official national data baselines. Such corrections can rapidly lead to improvements in the comprehensiveness of historical national data that can influence national policy discussions around fisheries. These corrections can definitely also lead to enhancements and refinements in regional and global data sets as presented by the statistics collated and reported annually by FAO on behalf of countries, which in turn will result in improved and more accurate assessments via instruments such as SOFIA.

Acknowledgments

We thank all former and current members of the global Sea Around Us initiative, and the numerous colleagues around the world who actively engage in catch reconstructions. We acknowledge funding support from the Oak Foundation, the Marisla Foundation, the Paul M. Angell Foundation and the MAVA Foundation.

References

